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•  Introduction & blackfold approach  
       - closed string (SUGRA) description of thermal probes 
  
•    Heating up DBI/NG solutions using: 
    blackfolds as thermal probe branes/strings in string theory 
 
  3 applications (new qualitative & quantitative effects)  
 
•  Thermal Bion solutions (wormhole & spike)  

•  Thermal string probes in AdS & finite T Wilson loops 

•  Thermal (spinning) giant gravitons 

•  Conclusion & outlook 



Introduction  
branes/strings have many applications: 
•  gauge theory: low energy dynamics, flavors, geometric picture of FT 

dualities 
•  quantum gravity: microstates of BHs, information paradox 
•  gauge/gravity (holography) 
 
 
n  Brane/string probes widely used in ST, including AdS/CFT 
 
-  uncover features of backgrounds, phase transitions, stringy observables, 

non-perturbative aspects of FT, dual operators in CFT, ads/CMT 
-  learn new things about fundamentals of ST/M-theory by studying low 

energy theories on D/M-branes 
 
conventionally used (at weak coupling):  
 F-stings: NG           (Wilson loops, q-qbar potential, energy loss of quarks) 
 D-branes: DBI        (Wilson loops in large sym/antisym reps, flavors,  
                                   meson spectroscopy, giant  gravitons) 
M-branes: PST        (giant gravitons, self-dual string) 



Open/closed perspectives  
  worldvolume  (DBI,NG)                             spacetime (SUGRA) 
  microscopic, open                                     macroscopic, closed 
  weak coupling                                           strong coupling 
   
-  for SUSY con!gs can interpolate between the two (exactly) 
-  for non-SUSY (!nite T): qualitative matching (more control for near-extremal)   

 “shapes of branes/strings” are determined dynamically 
 
 
    
 
 

can use symmetries, ansatze  
consistency to construct the exact 
backgrounds in SUGRA ( N >> 1)  

probe (N=1) 

most work on curved D-branes 
performed using open string picture: 

correspondence using the Nambu-Goto F-string action [8, 9]. Here, the “blown up” version

for a Wilson loop in a high-dimensional representation has been considered using the DBI

action, either for the symmetric representation using a D3-brane [10] or the antisymmetric

representation using a D5-brane [11].

The success of using the DBI action to describe D-branes probing zero-temperature back-

grounds of string theory motivated the application of the DBI action as a probe of thermal

backgrounds, particularly in the context of the AdS/CFT correspondence with either ther-

mal AdS space or a black hole in AdS as the background [12]. Applications include meson

spectroscopy at finite temperature, the melting phase transition of mesons and other types of

phase transitions in gauge theories with fundamental matter (see [13] for early works on this).

Furthermore, the thermal generalizations of the Wilson loop, the Wilson-Polyakov loop, in

high-dimensional representations were considered [14, 15].1

However, the validity of using the DBI action as a probe of thermal backgrounds is not

clear. In general the equations of motion (EOMs) for any probe brane can be written as

[16, 17]

Kab
�T ab = J · F � (1.1)

where Tab is the world-volume energy-momentum (EM) tensor for the brane, Kab
� is the

extrinsic curvature given by the embedding geometry of the brane and the right hand side,

J · F �, represents possible external forces arising from having a charged brane that couples

to an external field. In the applications of the DBI action as a probe of thermal backgrounds

the D-brane is treated as if the temperature of the background does not a�ect the physics

on the brane. Therefore, the EM tensor that enters in the EOMs (1.1) is the same as in the

zero-temperature case. However, there are degrees of freedom (DOFs) living on the brane

that are “warmed up” by the temperature of the thermal background, just like if one puts a

cold finger in a big bathtub with warm water. The thermal background should thus act as a

heat bath for the D-brane probe and the system should attain thermal equilibrium with the

D-brane probe gaining the same temperature as the background. Because of the DOFs living

on the brane this will change the EM tensor of the brane and thus in turn change the EOMs

(1.1) that one should solve for the probe brane.

In this paper we study the thermal generalization of the BIon solution. This serves as

a test case to study D-branes as probes of thermal backgrounds. The BIon solution is a

solution of the DBI action for a D-brane probing ten-dimensional flat space-time, the D-brane

world-volume having an electric flux interpreted in the bulk as an F-string. We shall instead

consider ten-dimensional hot flat space as our background. The challenge is that one does

not know what replaces the DBI action, which is a low energy e�ective action for a single

extremal D-brane at weak string coupling, when turning on the temperature. However, in

the regime of a large number N of coinciding D-branes we have an e�ective description of

the D-branes in terms of a supergravity solution in the bulk when gsN ⇥ 1. Using this

supergravity description one can determine the EM tensor for the D-brane in the regime of

large N . This EM tensor will then enable one to write down the EOMs (1.1) for a non-

extremal D-brane probe in the regime of large N . This results in a new method in which one

1Unlike in the D5-brane case, it seems that for the D3-brane case, which corresponds to a totally symmetric

representation of the Polyakov loop, there is no solution [14, 15].
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extrinsic curvature  
 (2nd fundamental form) 

(DBI) EM tensor 
of the brane  

Carter 

external force  

Note: any probe brane will have EOM of this form 



Example: BIon 
  
  DBI                                                         SUGRA 
  
D3-brane DBI with constant                     derive appropriate PDEs and  
electric flux   (D3->F1)                              prove existence of SUSY sol 

Figure 3: Sketch of the spike configuration.

Wormhole solution

For σ0 = 0 we showed above that the solution (??) corresponds to a spike. However, as

explained in Sec. ?? for more general values of σ0 one can use the solution to construct a

configuration representing strings going between branes and anti-branes [?], to which we refer

as the wormhole configuration (see Fig. ??).

Figure 4: Attaching a mirror solution to construct a wormhole configuration.

The separation (??) between the branes and anti-branes can be computed from (??) and

is given by

∆ ≡ 2z(σ0) =
2
√
πΓ(54)

√
σ4
0 + κ2

Γ(34)σ0
(2.21)

A plot of this quantity as a function of σ0 is given in Fig.??. It is clear that there is a minimum

value of the distance between the two branes, the minimum occurs at σ0 =
√
κ and its value

is

∆min =
2
√
2πΓ

(
5
4

)√
κ

Γ
(
3
4

) (2.22)

Since κ is related to the world-volume gauge field, we see that only for zero electric field the

two branes can annihilate. For large σ0 the distance ∆ between the two branes grows linearly

with σ0. We can now solve (??) for σ0 by keeping fixed the distance between the branes ∆

and the number of strings, which is done by keeping the charge parameter κ fixed. We obtain

σ2
0 =

∆2 ±
√
∆4 − 4a4κ2

2a2
(2.23)

where the numerical constant a is given by a2 =
2
√
πΓ( 5

4)
Γ( 3

4)
. There are two solutions which, for

large ∆, behave as [?]

σ0 $
aκ

∆
, σ0 $

∆

a
(2.24)
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Callan,Maldacena Lunin 

branes follow harmonic profiles 
(unique, given BCs) 

match: open/closed duality beyond decoupling limit 

     Q: Can one extend this  open/closed picture to finite T ? (non-SUSY) 
 
interesting since: 
-  develop horizon, learn about BH physics 
-  branes are used to probe spaces at finite T (hot flat or AdS space, AdS BH) 
-  thermal states in gauge theories (AdS/CFT) 



Intermezzo: conventional method for probe branes 
in thermal background 

conventionally used method: ‘Euclidean DBI probe’ method: 
 - Wick rotate background and classical DBI action 
 - find solns. of EOM 
 - identify the radii of thermal circle in background and DBI soln. 
                                                       (see also: Kiritsis/Kiritsis,Taylor/Kiritsis,Kehagias) 
boils down to: solving same (local) EOMs but different BCs 

this global condition is not enough to ensure that probe is in thermal 
equilibrium with the background                    

reason: to ensure thermal equilibrium we need to also modify 
              the EOMs (via the stress tensor) since the 
              brane DOFs get thermally excited 

3.3 Argument for new approach to thermal D-brane probes

As reviewed in the introduction, a number of papers in the literature (see for example [?,

?, ?, ?, ?]) have used the classical DBI action to probe finite temperature backgrounds in

string theory. In short, this method consists in Wick rotating both the background as well

as the classical DBI action, then finding solutions of the EOMs from the classical Euclidean

DBI action and finally identifying the radius of the thermal circle of the background with the

radius of the thermal circle in the Euclidean DBI action. From the classical solution one can

then evaluate physical quantities for the probe such as the energy, entropy and free energy.

We dub here this method the ”Euclidean DBI probe” method.

We give here a detailed argument for why our thermal D-brane probe, based on the

blackfold approach, should give a more accurate way to probe finite temperature backgrounds

in string theory than the Euclidean DBI probe method.7

We begin by considering in more detail the Euclidean DBI probe method. For simplicity

we stick to a D3-brane (thus in type IIB string theory) but our considerations apply to any

Dp-brane. Consider a type IIB string theory background with metric gµν and with a RR five-

form field strength F(5) turned on (for simplicity we do not consider other RR field strengths

and we also assume a constant dilaton). As shown above, the EOMs for the D3-brane DBI

action (??) take the form

T ab
DBIKab

ρ =⊥ρλ 1

4!
JabcdFλabcd (3.26)

where T ab
DBI is given by (??) and Jabcd by (??). We now perform a Wick rotation on the

background t = itE where t is the time coordinate of the background and tE the corresponding

direction in the Euclidean section of the background. Similarly we also perform a Wick

rotation for the world-volume time τ = iτE . Then the EOMs (??) become

(TE)
ab
DBI(KE)ab

ρ = (⊥E)
ρλ 1

4!
(JE)

abcd(FE)λabcd (3.27)

where the subscript E means that it is the Wick rotated quantity where the Wick rotation in

both the bulk and on the world-volume are treated as simple linear transformations on the

tensors, e.g. (TE)00DBI = −T 00
DBI and so on. It is now easily shown that one also obtains the

equations (??) as the EOMs of the Euclidean DBI probe in the Wick rotated background, i.e.

by varying the Wick rotated DBI action in the Wick rotated background. We can conclude

from this that there is a one-to-one map between solutions of the EOMs for a DBI probe

in a thermal background and the solutions of the EOMs for a Euclidean DBI probe in the

Wick-rotated thermal background.

To solve EOMs corresponds to solving certain differential equations under the restriction

of certain boundary conditions. The above equivalence between solving the EOMs for a DBI

probe in a thermal background and the EOMs for an Euclidean DBI probe in the Wick-

rotated thermal background only means that the differential equations are the same, instead

the boundary conditions are different. Thus, the equivalence works only locally. Instead there

are global differences in being in the Wick-rotated frame or not since one imposes different

boundary conditions, in particular regarding the thermal circle direction tE . In the Euclidean

probe method one uses the Wick rotated version of the usual static gauge tE = τE and

7The considerations of this section were independently worked out by Roberto Emparan.
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Example: single D3-brane near extremality (at weak coupling) 
             - gas of photons (+ superpartners) 

one imposes that the size of the thermal circle is the same for the probe as for the (Wick

rotated) thermal background. Thanks to the static gauge this boundary condition does not

enter in the EOMs for the Euclidean probe and is in that sense a global condition on the

solution. Therefore, one could think that this global condition is enough to ensure that the

probe, using the Euclidean DBI probe method, is in thermal equilibrium with the background.

However, we shall now argue that this global condition is not enough since the requirement of

thermal equilibrium between the probe and the background changes the EOMs of the probe

by changing the EM tensor, and hence the requirement of thermal equilibrium changes the

probe not only globally but also locally.

Consider the example of a D3-brane with zero world-volume field strength Fab = 0 in the

AdS5×S5 background. In the probe approximation this is described by the DBI action. The

EOMs are of the form (??) with T ab
DBI = −TD3γab. We notice that the EM tensor locally is

Lorentz invariant. This conforms with the fact that the electromagnetic field on the D3-brane

is in the vacuum state.

We now turn on the temperature in the background. Thus, the background is either

hot AdS space, or an AdS black hole, depending on the temperature, times the S5. The

D3-brane should be in thermal equilibrium with the background. This means in particular

that the DOFs living on the D3-brane get thermally excited, acquiring the temperature of the

background. Among the DOFs are the ones described by the electromagnetic field Fab living on

the brane. The quantum excitations of Fab are described by quantum electrodynamics locally

on the brane (since one can see by expanding the DBI action that one locally has Maxwell

electrodynamics for small Fab). This means that for small temperatures, near extremality, the

EM tensor takes the form of the Lorentz invariant piece plus the EM tensor corresponding to

a gas of photons. Consider a particular point q on the brane. We can always transform the

coordinates locally so that γab = ηab at that point. Then the EM tensor at q takes the form

Tab = −TD3ηab + T (NE)
ab , T (NE)

00 = ρ , T (NE)
ii = p , i = 1, 2, 3 (3.28)

where T (NE)
ab is the contribution due to the gas of photons, having the equation of state

ρ = 3p = π2T 4/2. Thus, we see that the fact that we have local DOFs living on the D3-brane

means that the EM tensor is changed once we turn on the temperature. In terms of the EOMs

for the probe we see that they are given by (??) with the EM tensor (??) (one can easily find

this EM tensor for general world-volume metric γab). Therefore, the EOMs are clearly not

the same as those of (??) where T ab
DBI = −TD3γab. Indeed, the EM tensor (??) is no longer

locally Lorentz invariant, which is in agreement with the fact that the brane has an excited

gas of photons on it.

In conclusion, the above example clearly illustrates that the requirement of thermal equi-

librium affects the probe not only globally but also locally in that the EOMs change from

those given from the DBI action. This shows that the thermal D-brane probe is not accurately

described by the Euclidean DBI probe method.8

8Note that the difference between the thermal D-brane probe and the Euclidean DBI probe is not due to

backreaction. A backreaction would mean that Kab
ρ should change. Instead, demanding thermal equilibrium

means that the EM tensor changes. Thus, even in the probe approximation the Euclidean DBI probe is not

accurate.
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Open/closed at finite T  
	 	  open (weak coupling) , N=1                             closed (strong coupling),  N >>1 
   
  thermal DBI                                                               black branes (solitons) 
 (thermal SUSY gauge theory                                - curved black brane solutions 
 + string corrections)                                                  in SUGRA  
 
 Grignani,Harmark,Marini,Orselli (to appear) exact solutions already hard at T=0 

go to regime where brane is  
approximately locally flat:  
-> can use probe approximation 
= 0th order blackfold construction 

gives the geometry to leading order in 
perturbative expansion governed r0/R 

like DBI/NG this is (to leading order) probe computation: 
dynamics in both cases described by Carter equation:  
 
- difference is EM tensor that you put 
    + different regime !   (match when T->0,N=1) 

thermal NG: quantize string in 
finite T background  
de Boer,Hubeny,Rangamani,Shigemori 



Blackfold approach 
novel treatment of SUGRA solutions:  
 - uses effective (long-wave length) expansion scheme 
  (technically/conceptually closer to worldvolume description) 
-  provides immediate intuitive information and easy access to    

thermodynamical quantities 
-  extends to more complicated (less symmetric) configurations that are 

beyond reach of current exact solution generating techniques 
 
provides effective description of black brane dynamics in terms of fluid 
living on dynamical worldvolume (describes how it fluctuates, spins, bends,..) 
  roughly: mix of fluid dynamics (cf. fluid/gravity) + “DBI”  
 
•   effective degrees of freedom: slowly-varying energy density+ fluid 

velocities + world volume bending scalars + charge/spin densities etc. 
 
•  EOMs for these follow from conservation of  
     stress-energy tensor, charge currents, …  
•  constructive procedure that maps solutions to regular bulk spacetimes 
 - but already interesting results at leading order  
  
 



Blackfold equations 
take black branes (possibly charged, intersections/bound states) 
 and curve them (e.g. into black holes with compact horizon topologies) 
  
      

length scale of the  
worldvolume Wp+1  

size-scale  
of the brane     

integrate out brane thickness 
è effective description involving 
     fluid living on the brane 
 
blackfold equations  
 
 - intrinsic equations: 
    conservation of EM on the w.v. 
    & charge conservation 
 
 
-  extrinsic equations:  

correspondence using the Nambu-Goto F-string action [8, 9]. Here, the “blown up” version

for a Wilson loop in a high-dimensional representation has been considered using the DBI

action, either for the symmetric representation using a D3-brane [10] or the antisymmetric

representation using a D5-brane [11].

The success of using the DBI action to describe D-branes probing zero-temperature back-

grounds of string theory motivated the application of the DBI action as a probe of thermal

backgrounds, particularly in the context of the AdS/CFT correspondence with either ther-

mal AdS space or a black hole in AdS as the background [12]. Applications include meson

spectroscopy at finite temperature, the melting phase transition of mesons and other types of

phase transitions in gauge theories with fundamental matter (see [13] for early works on this).

Furthermore, the thermal generalizations of the Wilson loop, the Wilson-Polyakov loop, in

high-dimensional representations were considered [14, 15].1

However, the validity of using the DBI action as a probe of thermal backgrounds is not

clear. In general the equations of motion (EOMs) for any probe brane can be written as

[16, 17]

Kab
�T ab = J · F � (1.1)

where Tab is the world-volume energy-momentum (EM) tensor for the brane, Kab
� is the

extrinsic curvature given by the embedding geometry of the brane and the right hand side,

J · F �, represents possible external forces arising from having a charged brane that couples

to an external field. In the applications of the DBI action as a probe of thermal backgrounds

the D-brane is treated as if the temperature of the background does not a�ect the physics

on the brane. Therefore, the EM tensor that enters in the EOMs (1.1) is the same as in the

zero-temperature case. However, there are degrees of freedom (DOFs) living on the brane

that are “warmed up” by the temperature of the thermal background, just like if one puts a

cold finger in a big bathtub with warm water. The thermal background should thus act as a

heat bath for the D-brane probe and the system should attain thermal equilibrium with the

D-brane probe gaining the same temperature as the background. Because of the DOFs living

on the brane this will change the EM tensor of the brane and thus in turn change the EOMs

(1.1) that one should solve for the probe brane.

In this paper we study the thermal generalization of the BIon solution. This serves as

a test case to study D-branes as probes of thermal backgrounds. The BIon solution is a

solution of the DBI action for a D-brane probing ten-dimensional flat space-time, the D-brane

world-volume having an electric flux interpreted in the bulk as an F-string. We shall instead

consider ten-dimensional hot flat space as our background. The challenge is that one does

not know what replaces the DBI action, which is a low energy e�ective action for a single

extremal D-brane at weak string coupling, when turning on the temperature. However, in

the regime of a large number N of coinciding D-branes we have an e�ective description of

the D-branes in terms of a supergravity solution in the bulk when gsN ⇥ 1. Using this

supergravity description one can determine the EM tensor for the D-brane in the regime of

large N . This EM tensor will then enable one to write down the EOMs (1.1) for a non-

extremal D-brane probe in the regime of large N . This results in a new method in which one

1Unlike in the D5-brane case, it seems that for the D3-brane case, which corresponds to a totally symmetric

representation of the Polyakov loop, there is no solution [14, 15].
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<< 

use EM tensor of black brane  
instead of DBI EM tensor   

Emparan,Harmark,Niarchos,NO 

same form as DBI/NG ! 

generalization using charged branes: 
 Emparan,Harmark,Niarchos,NO 
Caldarelli,Emparan,v.Pol 
Grignani,Harmark,Marini,NO,Orselli 



Stationary blackfolds and action principle 

  
powerful action principle to arrive at effective action, yielding BF EOMS: 
 
 
For stationary (i.e. also static) configurations:  
extrinsic equations for the embedding can be integrated to an action  
= Gibbs free energy  

1st law of thermo  =  blackfold equations for stationary configurations  

extremizing this action for fixed temperature, angular velocity, charge 
is equivalent to 1st law of thermo 

effective action = “thermal version” of DBI/NG:  
                         but in supergravity (closed string) regime  



Applications  
 
->  Heating up DBI/NG solutions using: 
    blackfolds as thermal probe branes/strings in string theory 
 
  shows new qualitative & quantitative effects  
 
 
•  Thermal Bion solutions (wormhole & spike)   
   (briefly also: M5-M2 system and self-dual string) 
 
•  Thermal string probes in AdS &  
    finite T Wilson loops 

•  Thermal (spinning) giant gravitons 

 

black probe          background 
 
D3-F1                  hot flat 10D  
 
F1                        AdS BH  
 
                             hot.. 
D3                        AdS5 x S5 
M2                        AdS7 x S4 
M5                        AdS4 x S7 



“Recipe” for stationary blackfold solutions  

-  find energy momentum tensor (+ charge current) of (charged) 
   black brane configuration one wants to bend   
 (perfect fluid with some specific equation of state) 
 How: use flat black brane (SUGRA) solution 
          + determine stress tensor/current that sources it 
 
- describe the geometric setup (background + embedding) 

- let the collective modes fluctuate over the brane worldvolume,  
  given the geometric setup  
+  impose  global  temperature, angular velocities + charges constant.  

-  write down the thermodynamic action  (off-shell functional) 

-  vary action to get equations of motion + solve for embedding 

-  given solution compute the on-shell thermodynamic quantities  
   + analyze 

 



BIon solution of DBI 
DBI describes dynamics of U(1) gauge field living on D-brane + scalars 
 describing transverse fluctuations 
è D3-brane with constant w.v. flux  
use DBI EOM: embedding profile of D3-brane  
 F-strings dissolving into D-brane 
 
         

µ, ν = 0, 1, ..., 9 are target space indices. Furthermore, Fab is the two-form field strength

living on the D-brane, C(4) is the RR-four form gauge field of the background and P [C(4)] is

its pull-back to the world-volume. Finally, the D3-brane tension is TD3 = [(2π)3gsl4s ]
−1 where

gs is the string coupling and ls is the string length.

Embedding

To describe the BIon we specialize to an embedding of the D3-brane world volume in 10D

Minkowski space-time with metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) +
6∑

i=1

dx2i . (2.3)

without background fluxes. Choosing the world volume coordinates of the D3-brane as

{σa, a = 0 . . . 3} and defining τ ≡ σ0, σ ≡ σ1, the embedding of the three-brane is given

by

t(σa) = τ , r(σa) = σ , x1(σ
a) = z(σ) , θ(σa) = σ2 , φ(σa) = σ3 . (2.4)

and the remaining coordinates xi=2..6 are constant. There is thus one non-trivial embedding

function z(σ) that describes the bending of the brane. The induced metric on the brane is

then

γabdσ
adσb = −dτ2 +

(
1 + z′(σ)2

)
dσ2 + σ2

(
dθ2 + sin2 θdφ2

)
. (2.5)

so that the spatial volume element is dV(3) =
√

1 + z′(σ)2σ2dΩ(2).

To get the appropriate F-string flux on the brane we turn on the world-volume gauge field

strength component F01. With this, the DBI action (??) gives the following Lagrangian

L = −4πTD3

∫ ∞

σ0

dσσ2
√

1 + z′(σ)2 − (2πl2sF01)2 (2.6)

Note that we assumed F01 to depend only on σ since this is required for spherical symmetry.

Boundary conditions

We have two boundary conditions on the BIon solution. The first one is

z(σ) → 0 for σ → ∞ . (2.7)

This condition ensures that far away from the center at r = 0 the D3-brane is flat and infinitely

extended with x1 = 0. Decreasing σ from ∞ the brane has a non-trivial profile x1 = z(σ). In

general we have a minimal sphere with radius σ0 in the configuration. For a BIon geometry

z(σ) is naturally a decreasing function of σ where at σ = σ0 the function z(σ) reaches its

maximum. Thus, σ takes values in the range from σ0 to ∞. At σ0 we impose a Neumann

boundary condition

z′(σ) → −∞ for σ → σ0 . (2.8)

The rationale of this condition is that if z(σ0) < ∞ the brane system cannot end at (r =

σ0, x1 = z(σ0)) because of charge conservation and this boundary condition, as we describe

5

- k F-strings ending on N coincident 
      infinitely extended D3-brane (spike) 

Figure 3: Sketch of the spike configuration.

Wormhole solution

For σ0 = 0 we showed above that the solution (??) corresponds to a spike. However, as

explained in Sec. ?? for more general values of σ0 one can use the solution to construct a

configuration representing strings going between branes and anti-branes [?], to which we refer

as the wormhole configuration (see Fig. ??).

Figure 4: Attaching a mirror solution to construct a wormhole configuration.

The separation (??) between the branes and anti-branes can be computed from (??) and

is given by

∆ ≡ 2z(σ0) =
2
√
πΓ(54)

√
σ4
0 + κ2

Γ(34)σ0
(2.21)

A plot of this quantity as a function of σ0 is given in Fig.??. It is clear that there is a minimum

value of the distance between the two branes, the minimum occurs at σ0 =
√
κ and its value

is

∆min =
2
√
2πΓ

(
5
4

)√
κ

Γ
(
3
4

) (2.22)

Since κ is related to the world-volume gauge field, we see that only for zero electric field the

two branes can annihilate. For large σ0 the distance ∆ between the two branes grows linearly

with σ0. We can now solve (??) for σ0 by keeping fixed the distance between the branes ∆

and the number of strings, which is done by keeping the charge parameter κ fixed. We obtain

σ2
0 =

∆2 ±
√
∆4 − 4a4κ2

2a2
(2.23)

where the numerical constant a is given by a2 =
2
√
πΓ( 5

4)
Γ( 3

4)
. There are two solutions which, for

large ∆, behave as [?]

σ0 $
aκ

∆
, σ0 $

∆

a
(2.24)
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Solving for z(σ) subject to the boundary conditions stated above, we obtain

−z′(σ) =

(
FDBI(σ)2

FDBI(σ0)2
− 1

)− 1
2

=

√
σ4
0 + κ2√

σ4 − σ4
0

(2.15)

where we recall that σ0 is the minimum value of the two-sphere radius σ. The explicit solution

for z can be obtained by integrating the expression in (??)

z(σ) =

∫ ∞

σ
dσ′

√
σ4
0 + κ2√

σ′4 − σ4
0

(2.16)

In particular for non-zero σ0 this represents a solution with a finite size throat, as illustrated

in Fig. ??.

Figure 2: Sketch of solution with finite size throat.

From the expression in (??) we can compute the energy density by evaluating the integrand

of (??), yielding

dH

dσ
= 4π TD3

√
(1 + z′(σ)2) (σ4 + κ2) = 4π TD3

σ4 + κ2√
σ4 − σ4

0

(2.17)

From this, dividing by the derivative of the solution z′(σ), we compute the energy density

along the brane
dH

dz
=

1

z′(σ)

dH

dσ
= 4π TD3

σ4 + κ2√
σ4
0 + κ2

. (2.18)

which is finite for σ in the range [σ0,∞).

Spike solution

For σ0 = 0 the integral in Eq. (??) gives the Coulomb-charge type of solution

z(σ) =
κ

σ
(2.19)

i.e. the spike solution (see Fig. ??). In Ref. [?] it was shown that the energy corresponding

to this solution is the energy of a fundamental string of a given length. This was done by

comparing the integral appearing in (??) with the explicit form of the solution z(σ) at a point

near the end of the spike, in the linear approximation and with a suitable regularization of

the integral providing the energy. In the non-linear case, and also to avoid divergences, it

is more convenient to compute the energy density along the brane as in (??). In particular

setting σ = σ0 = 0 in (??) we find that the energy density at the tip of the spike is given by

dH

dz

∣∣∣∣
σ=σ0=0

= 4π TD3κ = kTF1 (2.20)

where we used κ defined below (??). We thus find that this is the tension of the fundamental

string times the number of strings k, as expected.

7

Solving for z(σ) subject to the boundary conditions stated above, we obtain

−z′(σ) =

(
FDBI(σ)2

FDBI(σ0)2
− 1

)− 1
2

=

√
σ4
0 + κ2√

σ4 − σ4
0

(2.15)

where we recall that σ0 is the minimum value of the two-sphere radius σ. The explicit solution

for z can be obtained by integrating the expression in (??)

z(σ) =

∫ ∞

σ
dσ′

√
σ4
0 + κ2√

σ′4 − σ4
0

(2.16)

In particular for non-zero σ0 this represents a solution with a finite size throat, as illustrated

in Fig. ??.

Figure 2: Sketch of solution with finite size throat.

From the expression in (??) we can compute the energy density by evaluating the integrand

of (??), yielding

dH

dσ
= 4π TD3

√
(1 + z′(σ)2) (σ4 + κ2) = 4π TD3

σ4 + κ2√
σ4 − σ4

0

(2.17)

From this, dividing by the derivative of the solution z′(σ), we compute the energy density

along the brane
dH

dz
=

1

z′(σ)

dH

dσ
= 4π TD3

σ4 + κ2√
σ4
0 + κ2

. (2.18)

which is finite for σ in the range [σ0,∞).

Spike solution

For σ0 = 0 the integral in Eq. (??) gives the Coulomb-charge type of solution

z(σ) =
κ

σ
(2.19)

i.e. the spike solution (see Fig. ??). In Ref. [?] it was shown that the energy corresponding

to this solution is the energy of a fundamental string of a given length. This was done by

comparing the integral appearing in (??) with the explicit form of the solution z(σ) at a point

near the end of the spike, in the linear approximation and with a suitable regularization of

the integral providing the energy. In the non-linear case, and also to avoid divergences, it

is more convenient to compute the energy density along the brane as in (??). In particular

setting σ = σ0 = 0 in (??) we find that the energy density at the tip of the spike is given by

dH

dz

∣∣∣∣
σ=σ0=0

= 4π TD3κ = kTF1 (2.20)

where we used κ defined below (??). We thus find that this is the tension of the fundamental

string times the number of strings k, as expected.

7

k F-strings stretching between parallel system 
 (wormhole): finite throat size  
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Figure 5: ∆ for κ = 1 in the Callan-Maldacena case

In the first case, the “thin throat” branch, the radius of the throat goes to zero as ∆ → ∞.

In the second case, the “thick throat” branch, the radius of the throat grows linearly with ∆

as ∆ → ∞.

3 Heating up DBI solutions by the blackfold approach

Our aim in the rest of the paper is to turn on the temperature and analyze what happens

to the BIon solution described in the previous section. We propose in this section that

the appropriate framework in which to heat up DBI solutions is provided by the blackfold

approach [?, ?]. We will motivate this here by first casting the DBI EOMs in a form that

makes apparent the generalization to the thermally excited case, as discussed in Section ??.

The latter involves the EM tensor for a black D3-F1 brane bound state, which is subsequently

obtained in Section ??.

In Section ?? we give a detailed argument for why our thermal D-brane probe, based on the

blackfold approach, should give a more accurate way to probe finite temperature backgrounds

in string theory than the Euclidean DBI probe method that has been used in the literature.

3.1 Extrinsic embedding equations from DBI action

In this section we write a general expression of the EOMs for the DBI action. This takes

the form of a set of extrinsic embedding equations. Below we shall use this to connect to the

blackfold approach of [?, ?] and thence to go to the thermal case.

Our starting point4 is the DBI action for the D3-brane given in (??). Before considering

the EOMs we first obtain the world-volume EM tensor. This can be done by varying the

action (??) with respect to the world-volume metric γab in (??), i.e.

T ab =
2
√
γ

δIDBI

δγab
(3.1)

4Our considerations are easily generalized to Dp-branes
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Action for thermal Bion + solution 

relation to DBI: 

Use black D3-F1 brane SUGRA soltion to get stress tensor/currents 
action for thermal Bion takes DBI-like form:  

EOM can be integrated exactly 

reproduces extremal BIon in zero temperature limit 

validity of the probe approximation: 



Thermal spike ?  

argue for the matching here by using the blackfold solution beyond its validity to show that

its physical behavior is very close to that of k non-extremal F-strings, and the slight numerical

di⇥erences can be explained by the fact that we do not have supersymmetry to protect us.

We illustrate the matching of the blackfold solution and non-extremal black F-string solution

at the correspondence point in Figure 7.

Figure 7: Illustration of the matching of the D3-F1 blackfold configuration and the non-extremal

black F-strings at the correspondence point.

-Correspondence point

Non-extremal black F-strings

D3-F1 blackfold configuration

z direction
6

3.2 Correspondence point for matching of throat to F-strings

In [1] we found a solution using the blackfold approach for a spherically symmetric config-

uration of N D3-branes with a throat supported by an F-string flux such that the F-string

charge measured over each spherical surface is k. The throat ends in a minimal two-sphere of

radius ⇥0. In this section we find a regime of the solution of Ref. [1] in which it behaves like

k non-extremal F-strings at the end of the throat, i.e. at ⇥ = ⇥0.7 This enables us to match

the D3-F1 blackfold configuration to k non-extremal black F-strings. As we explain below,

this means that the end of the throat ⇥ = ⇥0 serves as the correspondence point between the

two di⇥erent solution, as illustrated in Figure 7.

Since we are aiming to generalize the extremal infinite spike solution of [3] to non-zero tem-

perature, as discussed above in Section 3.1, we approach this problem in the low temperature

limit in which we are close to extremality. We begin therefore this section by examining the

thermodynamics of the supergravity solution of k non-extremal F-strings at low temperature,

and subsequently find a corresponding regime of the non-extremal D3-F1 solution of [1].

Non-extremal black F-strings at low temperature

The supergravity solution for k coincident non-extremal black F-strings lying along the z

direction is

ds2 = H�1(�fdt2 + dz2) + f�1dr2 + r2d�2
7

e2� = H�1 , B0z = H�1 � 1 , H = 1 +
r60 sinh

2 �̄

r6
, f = 1� r60

r6

(3.2)

7In order to compare our findings with the results for a non extremal fundamental string we work in this

section in terms of the quantities (T,N, k), TF1 and TD3 instead of � and T̄ .

13

thermal Bion BF solution does not allow for infinite spike 
 
but: configuration in question can be made by matching up a non-extremal 
black F-string solution with throat solution !  
 
  non-trivial: two independent gluing conditions, tension & entropy density 
                    agree impressively good  

-  Thermal wormhole Bion solutions studied in detail: 
    three phases for given brane separation instead  
    of two 



Generalization to M2-M5 funnel 

apply to M2-M5 brane system (D1-F3 cousin): fully localized intersection 
 ¼ BPS intersection described by 3-funnel (spike) solution of effective 
  5-brane worldvolume theory  

Niarchos,Siampos 

self-dual string soliton 
in new regime 

also: thermal version using BF (wormhole & “spike”) 

find:  
prediction for central charge of self-dual 
 string, valid for large N2, N5 

use again non-trivial gluing conditions at correspondence point & extrapolation  

from dimensional 
considerations 

-> implies 
   the scaling 



Thermal string probes in AdS 
apply BF description of thermal string probes to finite T Wilson loops  
 in context of AdS/CFT  
 
-  previous studies: use extremal (Nambu-Goto) probe in AdS BH background 

 classical NG action becomes increasingly inaccurate since as string approaches 
 event horizon, local temperature for static string probe is redshifted towards infinity 

  - want to take into account thermal degrees of freedom for more accurate 
 description (and see what effects are)  
 
•   one way: quantize NG action in finite T background to include thermalization 
  leading quadratic correction for string probing AdS BH 
   
 
•  other approach (BF): use SUGRA solution for non-extremal F-string to describe 
 finite T Wilson loop 
 
  SUGRA F-string requires many (k) coincident F-strings: 
  so describes Wilson loop in k-symmetric product of fundamentals  
regime of validity:  
 
  
  

de Boer,Hubeny,Rangamani,Shigemori 

Brandhuber,Itzhaki,Sonnenschein,Yankielowicz/Rey,Theisen,Yeei 



Set up  
 consider rectangular Wilson loops in finite T N=4 SU(N) SYM in large N limit 
 
 expectation value of WL gives potential for Q-Qbar, Q = kth symmetric rep of k quarks 
 
background: black hole in AdS5 (Poincare patch) 
 
Q-Qbar pair dual to k coincident probe F-strings attached to locations of the  
two particles on the boundary (distance L) 
 
reveals: 
 
-  new correction term, in small LT expansion of free energy,  in Coulomb potential  
 (as compared to first correction  of extremal F-string probe),  
    can become leading correction for sufficiently small termperatures 
 
-  finite LT:  phase transition to phase with two Polyakov loops (one for each charge) 
    -> Debye screening of charges 
   order 1/N correction to onset of Debye screening relative to extremal F-string 
 
-  careful analysis of validity of probe approximation: 
     breaks down close to event horizon 
  



relevant configurations  

find critical distance to event horizon beyond which the probe cannot go 
 (consequence of thermal equilibirium & fact that non-extremal F-strings have a max T)  



finite LT results 

dashed line: NG result 

extremal (NG) probe  thermal probe correction 

dominant for  



Debye screening 

onset of screening increases 
(slightly less easily screened) 



Thermal giant gravitons 

apply thermal probe-brane method to giant graviton (GG) 
  - archetypical case: D3 wrapped on three-sphere and with CM moving along  
    five-sphere (blown up version of point particle graviton, uses DBI) 
 
dual gauge theory: GG moving with ang. mom. J dual to multi-trace op.  
 with R-charge J  and 
heating up: thermal state resulting from ensemble of ops. that are fluctuations  
 around  
     true up to       : : AdS BH is formed 
 
find following features for thermal GG 
-  solutions have J > J_min (cf. extremal where J -> 0 for point particle) 
   thermal GG is forced to blow up (cf Bion, which has minimal radius) 
-  we find T_max, sets scale of soln, but probe requires T_max >> T_HP 
 so if we should be well below HP, we have T/T_max << 1  
   (cf thermal rectangular Wilson loop)  
- free energy in low T limit:  
 
-  for J_min < J < J_max: two available solutions (stable +unstable) 
 (cf Bion  +WL, where number of solutions changes)  
- also: new stable branch for the extremal GG 
 

Armas,Harmark,NO,Orselli,Vigand-Pedersen 



Extremal GG in AdS5xS5 

parameterize S5 as  

embedding of D3 

induced metric on D3-brane 

DBI action 



Extremal GG solutions  

lower branch: usual BPS branch 
upper branch:  non-BPS branch (1/2 BPS in limit r=L) 
                         stable for sqrt(3)/2 < r/L <  1  

- two solutions for                               (one stable, one unstable)  



Extremal GG: energy & stability  

lower (blue) branch for  0 <= J <= 1 always stable (conventional) 
upper (red)  branch has stable part for 1 <= J <= 9/8 



Heating up the GG 

need to generalize BF approach slightly 
 
   - BF EOM for charged branes in backgrounds with fluxes 
     (also: extra contributions to conserved quantities, action etc. ) 
 
  - brane probe moves with constant velocity along Killing direction, 
    (not stationary solution), but not accelerating since moving along geodesic 
     we call this quasi-stationary blackfolds (boosted stationary BFs) 
 
    * does not emit radiation/can go beyond probe using MAE 

cf. Camps,Emparan,Figueras,Giusto,Saxena 

interpretation of conserved quantities:  
 properties of the BF probe moving in the background  
  (not of probe +background 
     cf energy + momentum of particle moving with constant velocity ) 



BF in flux backgrounds 

BF EOM 

conserved quantities  

mechanical action 

= thermodynamic action 

extra “WZ” term 

transverse Lorentz 
contraction factor 



finite T Giant Graviton  

use data of black D3-brane 

thermal GG EOM 

subject to charge conservation: local temperature is redshifted: 



 
Thermal GG solution space 

-  minimal possible size 
  no point particle limit ! 
 
- upper/lower branch connected 

system has  
max temperature 



interesting regimes & validity 

validity:  

-> so need T << T_max,  
   otherwise in regime where AdS BH  
   background dominates 

validity (D3-branes in sugra approximation) 
 probe approx of BF 

-  low temperatures: expand around extremal ase 
-  maximal size, expand around r=L (k=1) 
-  minimal charge parameter limit: expand around k=T, i.e. the point where the 
     two branches meet 



action + angular momentum  

-  less phase space as  
    temperature increases 



thermodynamics/stability  

prediction for dual 
 GT at strong coupling 



thermal GG moving on AdS5  

only (part of) lower branch 
is stable 

again:  



Spinning Giant Gravitons 
Armas,NO,Vigand-Pedersen (to appear) 
 

one can spin up the thermal giant graviton in the internal S3 directions 
  - not possible for the SUSY GG because of Lorentz invariance on the w.v. 

interesting to consider effect of extra quantum number (spin S) on the phase space 
  (EOM still solvable)  
-  maximum possible internal spin S (for given T) 
-  stable branch 
-  for maximum size GG: E \sim S   
 
+ new extremal limit describing a nullwave giant 
    obtained by taking a double scaling limit:   

angular velocity w on the two  
U(1) directions in S3  

P = null momentum density 



Low T spinning giants 

free energy around the extremal GG 

D3 on S3  

M5 on S5 

M2 on S2 cannot spin on S2 

thermal states have free energies that are (up to numerical factors) 
those for the D3,M5,M2 field theories 



Nullwave Giant 

spectrum 

for maximum size GG:  

- new extremal solution: not SUSY + not captured by DBI 
-  action 

-  EM tensor 

•  zero temperature excitation of the ground state (in the closed string regime) 
•  open string counterpart: presumably need non-abelian DBI 
   ( but perhaps related to EM waves on GG:  ->  
     open-closed duality between electromagnetic and mechanical waves) 



Summary & Outlook 
•   proposed a new method for F-string/D-brane probes in thermal backgrounds 
-   (can be used for all types of brane probes in thermal backgrounds 
      (M-brane, NS5-brane)  -> based on blackfold approach 
  
 + applied to three cases:  
  (Bion in hot flat space, F-string in AdS BH, thermal GG) 
 
  discussed relation of this method to previous work:  
    - takes into account that the probe itself is a thermal object 
 
generalize hot Bion to Dp-F1: qualitatively different features ?   (cf M2-M5)  
 
 apply new perspective to AdS probes  (thermal AdS or AdS BH) 
  - may resolve discrepancies between gravity and gauge theory 
    found for Polaykov loops based on D3 (sym)/D5(antisym) 
  - revisit other previously studied cases 
 
F-string in AdS:  generalize to heavy quarks (BCs for string close to bdr) 
                           energy loss of heavy quark moving thru plasma 
 
examine correction term in quark potential at weak ‘t Hooft coupling 
 



Summary & Outlook (cont’d) 
•   for GG find description of thermal state in dual gauge theory   
   (compute free energy and compare) 
 
 - examine what happens above HP temperature (AdS BH bgr.)  
 
-  many GG moving along equator of S5 (smeared along circle)  
   horizon topology change (when horizons overlap) 
  study difference between smeared/non-smeared phases 
  connection to superstar, LLM ½ BPS bubbling spaces (+ finite T generalization) 

-  further examine new extremal GG with nullwave 
- heat up less SUSY GG (1/4, 1/8)  

more generally:  
• use blackfold formalism to: 
  - go beyond probe level (backreaction effects)            
  - study time evolution and stability 
 
 find first principles derivation from ST of the action describing thermal 
 D-brane probes  
 
-  go beyond tree-level: effect of one or higher string loops 

 

Camps,Emparan,Haddad 
Armas,Camps,Harmark,NO 
Camps,Emparan 
Armas,Gath,NO 



Relevance of BF method 
•  new stationary BH solutions:  
  approximate analytic construction of BH metrics in higher D gravity/ 
supergravities (cf. String Theory)  
  - possible horizon topologies, thermodynamics, phase structure, …  
  - new non-extremal and extremal BH solutions 
  - useful for insights/checks on exact analytic/numeric solutions   
 
•  BH instabilities and response coefficients:  
   understand GL instabilities in long wavelength regime, dispersion relation,  
   elastic (in) stabilities, new long wavelength response coefficients for BHs,         
Young modulus  (hydro + material science) 

•  Thermal probe branes/strings: 
 new method to probe finite T backgrounds with probes that are in thermal 
equilibrium with the background (e.g. hot flat space, BHs)  
                                                                    
•  AdS/CFT: 
 many potential applications 
 (new black objects in AdS, connection with fluid/gravity, thermal probes 
  thermal giant gravitons, BHs on branes, … ) 
 
  + interrelations between the four items above 

EHONR/EHON/ Caldarelli,Emparan,Rodriguez 
Armas,NO/Camps,Emparan,Giusto,Saxena/.. 

Camps,Emparan,Haddad Armas,Camps,Harmark,NO 
Camps,Emparan/Armas,Gath,NO/Armas,NO 
 

GHMOO 



The end 



More on DBI-action and EOM 
DBI action (restrict to D3 for simplicity) 
        

feature compared to the zero temperature case. The existence of this maximum gives rise to

three possible phases with different σ0 for a given ∆. For small temperatures and/or large σ0
the ∆ as a function of σ0 resembles increasingly closely the zero temperature counterpart.

We end in Section ?? with the conclusions and discussions of further directions.

In a forthcoming paper [?] we investigate the thermodynamics of our newly found solution
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account the non-linearities of the DBI action. It has been found that the brane curves before
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its bulk interpretation is that of F-strings dissolving into the D-brane [?, ?]. Furthermore,
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its thermal generalization. This will also enable us to introduce the setup and provide the
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We consider in this paper only the D3-brane BIon solution, and its thermal generalization.

However, all our results and considerations can readily be extended to general Dp-branes.

2.1 DBI action and setup

Consider a D3-brane embedded in a 10-dimensional space-time with the only background flux

turned on being the Ramond-Ramond five-form flux. We furthermore assume the background

to have a constant dilaton. The DBI action for the D3-brane then takes the form

IDBI = −TD3

∫

w.v.
d4σ

√
− det(γab + 2πl2sFab) + TD3

∫

w.v.
P [C(4)] (2.1)

where the integrals are performed over the four-dimensional world-volume. Here we have

defined the induced world-volume metric

γab = gµν∂aX
µ∂bX

ν (2.2)

where gµν is the background metric, Xµ(σa) is the embedding of the brane in the background

with σa being the world-volume coordinates, a, b = 0, 1, 2, 3 are world-volume indices and

4

EOMs by varying wrt embedding map 

We find

T ab = −TD3

2

√
− det(γ + 2πl2sF )

√
γ

[
((γ + 2πl2sF )−1)ab + ((γ + 2πl2sF )−1)ba

]
(3.2)

where we defined the determinant γ = − det(γab).

We now consider the EOMs for the DBI action (??). These are found by variation of the

embedding map Xµ(σa). We first notice that the Born-Infeld term in (??) only contributes

through the variation of the world-volume metric. We compute

δγab = gµν,λ∂aX
µ∂bX

νδXλ + gµλ(∂aX
µ∂bδX

λ + ∂bX
µ∂aδX

λ) (3.3)

Hence we can write the variation of the Langrangian density of (??) as

1

2

√
γT ab(gµν,λ∂aX

µ∂bX
νδXλ + 2gµλ∂aX

µ∂bδX
λ)

+
TD3

4!
εabcd∂aX

µ∂bX
ν∂cX

ρ(4∂dδX
λCµνρλ + ∂dX

αCµνρα,λδX
λ) (3.4)

giving the EOMs

1

2

√
γT abgµν,λ∂aX

µ∂bX
ν − ∂b(

√
γT ab)gµλ∂aX

µ −√
γT abgµλ,ν∂aX

µ∂bX
ν

−√
γT abgµλ∂a∂bX

µ +
TD3

4!
εabcd∂aX

µ∂bX
ν∂cX

ρ∂dX
α(Cµνρα,λ − 4Cµνρλ,α) = 0 (3.5)

We define now the projector hµν along the tangent directions to the D3-brane

hµν = γab∂aX
µ∂bX

ν (3.6)

along with the projector ⊥µν along the orthogonal directions, defined as ⊥µν= gµν − hµν .

Using these we can define the extrinsic curvature tensor for the embedding

Kab
ρ =⊥ρ

λ(∂a∂bX
λ + Γλ

µν∂aX
µ∂bX

ν) (3.7)

See [?] for more on these geometrical quantities. We define furthermore the partial pullback

of the RR five-form field strength F(5) = dC(4)

Fλabcd = ∂aX
µ∂bX

ν∂cX
ρ∂dX

αFλµνρα (3.8)

and the D3-brane RR charge current

Jabcd = TD3
1
√
γ
εabcd (3.9)

Projecting now the EOMs (??) with ⊥ρλ we can write the resulting EOMs as

T abKab
ρ =⊥ρλ 1

4!
JabcdFλabcd (3.10)

using the above definitions. This is the extrinsic equation for the D3-brane, with the EM

tensor given by (??). As explained in [?] the equation (??) is basically the Newton’s second

law of brane mechanics, with T ab replacing the mass and Kab
ρ the acceleration of the point

particle, while the right hand side generalizes the Lorentz force for a charged particle.5

5If we instead project the EOMs (??) with hρλ we obtain the equation for conservation of the EM tensor

Tab on the brane. See [?] for general comments on this.
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BIon solution: stress tensor = extremal D3-F1 sugra solution (due to SUSY) 

heating up the Bion: take stress tensor of non-extremal D3-F1 sugra solution 



Example: BIon 
 n DBI = low energy effective action for D-brane dynamics (integrating out 
massive open d.o.f.):  
   w 1st example that exploited full non-linear dynamics: BIon solution 
new phenomena:  
    - multiple coincident F-strings described in terms of D-branes 
    - 1D F-string with zero thickness is blown up into higher-dim brane  
        wrapped on sphere 
 
  è many important applications of DBI in ST & AdS/CFT  
         (giant gravitons, blown up Wilson loops as D3 or D5 branes, …)  
  
       likewise: NG for string probes (Wilson loops, ..)  
 
    



BIon solution of DBI 
DBI describes dynamics of U(1) gauge field living on D-brane + scalars 
 describing transverse fluctuations 
 linearized regime: Maxwell for gauge field + free, massless scalars 
 
soln. in lin. regime: Maxwell point charge with delta-function source 
è string ending in point charge 
    on the brane 

use full non-linear DBI: brane curves before it reaches the point charge  
 F-strings dissolving into D-brane 
 
         

described by an embedding profile that follows from DBI EOM 

Solving for z(σ) subject to the boundary conditions stated above, we obtain

−z′(σ) =

(
FDBI(σ)2

FDBI(σ0)2
− 1

)− 1
2

=

√
σ4
0 + κ2√

σ4 − σ4
0

(2.15)

where we recall that σ0 is the minimum value of the two-sphere radius σ. The explicit solution

for z can be obtained by integrating the expression in (??)

z(σ) =

∫ ∞

σ
dσ′

√
σ4
0 + κ2√

σ′4 − σ4
0

(2.16)

In particular for non-zero σ0 this represents a solution with a finite size throat, as illustrated

in Fig. ??.

Figure 2: Sketch of solution with finite size throat.

From the expression in (??) we can compute the energy density by evaluating the integrand

of (??), yielding

dH

dσ
= 4π TD3

√
(1 + z′(σ)2) (σ4 + κ2) = 4π TD3

σ4 + κ2√
σ4 − σ4

0

(2.17)

From this, dividing by the derivative of the solution z′(σ), we compute the energy density

along the brane
dH

dz
=

1

z′(σ)

dH

dσ
= 4π TD3

σ4 + κ2√
σ4
0 + κ2

. (2.18)

which is finite for σ in the range [σ0,∞).

Spike solution

For σ0 = 0 the integral in Eq. (??) gives the Coulomb-charge type of solution

z(σ) =
κ

σ
(2.19)

i.e. the spike solution (see Fig. ??). In Ref. [?] it was shown that the energy corresponding

to this solution is the energy of a fundamental string of a given length. This was done by

comparing the integral appearing in (??) with the explicit form of the solution z(σ) at a point

near the end of the spike, in the linear approximation and with a suitable regularization of

the integral providing the energy. In the non-linear case, and also to avoid divergences, it

is more convenient to compute the energy density along the brane as in (??). In particular

setting σ = σ0 = 0 in (??) we find that the energy density at the tip of the spike is given by

dH

dz

∣∣∣∣
σ=σ0=0

= 4π TD3κ = kTF1 (2.20)

where we used κ defined below (??). We thus find that this is the tension of the fundamental

string times the number of strings k, as expected.
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Setup and solution 

 specialize to: 10D flat background metric + zero 4-form 

 embedding of  3-brane 
+ turn constant w.v. gauge field 

- k F-strings ending on N coincident 
      infinitely extended D3-branes 
- or stretching between two parallel systems 

µ, ν = 0, 1, ..., 9 are target space indices. Furthermore, Fab is the two-form field strength

living on the D-brane, C(4) is the RR-four form gauge field of the background and P [C(4)] is

its pull-back to the world-volume. Finally, the D3-brane tension is TD3 = [(2π)3gsl4s ]
−1 where

gs is the string coupling and ls is the string length.

Embedding

To describe the BIon we specialize to an embedding of the D3-brane world volume in 10D

Minkowski space-time with metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) +
6∑

i=1

dx2i . (2.3)

without background fluxes. Choosing the world volume coordinates of the D3-brane as

{σa, a = 0 . . . 3} and defining τ ≡ σ0, σ ≡ σ1, the embedding of the three-brane is given

by

t(σa) = τ , r(σa) = σ , x1(σ
a) = z(σ) , θ(σa) = σ2 , φ(σa) = σ3 . (2.4)

and the remaining coordinates xi=2..6 are constant. There is thus one non-trivial embedding

function z(σ) that describes the bending of the brane. The induced metric on the brane is

then

γabdσ
adσb = −dτ2 +

(
1 + z′(σ)2

)
dσ2 + σ2

(
dθ2 + sin2 θdφ2

)
. (2.5)

so that the spatial volume element is dV(3) =
√

1 + z′(σ)2σ2dΩ(2).

To get the appropriate F-string flux on the brane we turn on the world-volume gauge field

strength component F01. With this, the DBI action (??) gives the following Lagrangian

L = −4πTD3

∫ ∞

σ0

dσσ2
√

1 + z′(σ)2 − (2πl2sF01)2 (2.6)

Note that we assumed F01 to depend only on σ since this is required for spherical symmetry.

Boundary conditions

We have two boundary conditions on the BIon solution. The first one is

z(σ) → 0 for σ → ∞ . (2.7)

This condition ensures that far away from the center at r = 0 the D3-brane is flat and infinitely

extended with x1 = 0. Decreasing σ from ∞ the brane has a non-trivial profile x1 = z(σ). In

general we have a minimal sphere with radius σ0 in the configuration. For a BIon geometry

z(σ) is naturally a decreasing function of σ where at σ = σ0 the function z(σ) reaches its

maximum. Thus, σ takes values in the range from σ0 to ∞. At σ0 we impose a Neumann

boundary condition

z′(σ) → −∞ for σ → σ0 . (2.8)

The rationale of this condition is that if z(σ0) < ∞ the brane system cannot end at (r =

σ0, x1 = z(σ0)) because of charge conservation and this boundary condition, as we describe

5

below, enables us to attach a mirror of the solution, reflected in the hyperplane x1 = z(σ0).

In line with this, we define

∆ ≡ 2z(σ0) (2.9)

as the separation distance between the brane and its mirror. Fig. ?? illustrates our setup and

the definitions of σ0 and ∆.

! 

z 

D3 

Figure 1: Illustration of the setup, showing the embedding function z(σ) and the definition of the

parameters σ0 and ∆.

2.2 BIon solution

We now consider the Hamiltonian corresponding to the Lagrangian (??). To derive this we

need the canonical momentum density 4πσ2Π(σ) = δL/δ(∂τA1) associated with the world-

volume gauge field component A1. Using F01 = ∂τA1 − ∂σA0 this gives

Π(σ) = TD3
(2πl2s)

2F01√
1 + z′2 − (2πl2sF01)2

(2.10)

so that the Hamiltonian can be easily constructed as

HDBI = 4π

∫
dσσ2Π(σ)∂τA1(σ, τ)− L = 4π

∫
dσ

[
σ2Π(σ)F01 − ∂σ(σ

2Π(σ))A0(σ)
]
− L

(2.11)

Here we have in the second step integrated by parts the term proportional to ∂σA0, showing

that A0 can be considered as a Lagrange multiplier imposing the constraint ∂σ(σ2Π(σ)) = 0

on the canonical momentum. Solving this constraint gives

Π(σ) =
k

4πσ2
=

TD3κ

σ2TF1
(2.12)

where k is an integer, TF1 = 1/2πl2s is the tension of a fundamental string and we have defined

κ ≡ kTF1
4πTD3

= kπgsl2s . Using (??) in (??) the Hamiltonian becomes

HDBI = 4πTD3

∫
dσ

√
1 + z′(σ)2FDBI(σ) , FDBI(σ) ≡ σ2

√
1 +

κ2

σ4
(2.13)

The resulting EOM for z(σ), obtained by varying (??), is

(
z′(σ)FDBI(σ)√

1 + z′(σ)2

)′

= 0 (2.14)

6

Solving for z(σ) subject to the boundary conditions stated above, we obtain
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where we recall that σ0 is the minimum value of the two-sphere radius σ. The explicit solution

for z can be obtained by integrating the expression in (??)
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(2.16)

In particular for non-zero σ0 this represents a solution with a finite size throat, as illustrated

in Fig. ??.

Figure 2: Sketch of solution with finite size throat.

From the expression in (??) we can compute the energy density by evaluating the integrand

of (??), yielding
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(1 + z′(σ)2) (σ4 + κ2) = 4π TD3
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0

(2.17)

From this, dividing by the derivative of the solution z′(σ), we compute the energy density

along the brane
dH

dz
=

1

z′(σ)

dH

dσ
= 4π TD3

σ4 + κ2√
σ4
0 + κ2

. (2.18)

which is finite for σ in the range [σ0,∞).

Spike solution

For σ0 = 0 the integral in Eq. (??) gives the Coulomb-charge type of solution

z(σ) =
κ

σ
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i.e. the spike solution (see Fig. ??). In Ref. [?] it was shown that the energy corresponding

to this solution is the energy of a fundamental string of a given length. This was done by

comparing the integral appearing in (??) with the explicit form of the solution z(σ) at a point

near the end of the spike, in the linear approximation and with a suitable regularization of

the integral providing the energy. In the non-linear case, and also to avoid divergences, it
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setting σ = σ0 = 0 in (??) we find that the energy density at the tip of the spike is given by
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where we used κ defined below (??). We thus find that this is the tension of the fundamental

string times the number of strings k, as expected.
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Spike and wormhole solution (T=0) 
spike: 
        

wormhole from solution with finite throat size: 
 attach mirror configuration  

Solving for z(σ) subject to the boundary conditions stated above, we obtain
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From the expression in (??) we can compute the energy density by evaluating the integrand

of (??), yielding

dH

dσ
= 4π TD3

√
(1 + z′(σ)2) (σ4 + κ2) = 4π TD3

σ4 + κ2√
σ4 − σ4

0

(2.17)

From this, dividing by the derivative of the solution z′(σ), we compute the energy density

along the brane
dH

dz
=

1

z′(σ)

dH

dσ
= 4π TD3

σ4 + κ2√
σ4
0 + κ2

. (2.18)

which is finite for σ in the range [σ0,∞).

Spike solution

For σ0 = 0 the integral in Eq. (??) gives the Coulomb-charge type of solution

z(σ) =
κ

σ
(2.19)

i.e. the spike solution (see Fig. ??). In Ref. [?] it was shown that the energy corresponding

to this solution is the energy of a fundamental string of a given length. This was done by

comparing the integral appearing in (??) with the explicit form of the solution z(σ) at a point

near the end of the spike, in the linear approximation and with a suitable regularization of

the integral providing the energy. In the non-linear case, and also to avoid divergences, it

is more convenient to compute the energy density along the brane as in (??). In particular

setting σ = σ0 = 0 in (??) we find that the energy density at the tip of the spike is given by

dH

dz

∣∣∣∣
σ=σ0=0

= 4π TD3κ = kTF1 (2.20)

where we used κ defined below (??). We thus find that this is the tension of the fundamental

string times the number of strings k, as expected.
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Figure 3: Sketch of the spike configuration.

Wormhole solution

For σ0 = 0 we showed above that the solution (??) corresponds to a spike. However, as

explained in Sec. ?? for more general values of σ0 one can use the solution to construct a

configuration representing strings going between branes and anti-branes [?], to which we refer

as the wormhole configuration (see Fig. ??).

Figure 4: Attaching a mirror solution to construct a wormhole configuration.

The separation (??) between the branes and anti-branes can be computed from (??) and

is given by

∆ ≡ 2z(σ0) =
2
√
πΓ(54)

√
σ4
0 + κ2

Γ(34)σ0
(2.21)

A plot of this quantity as a function of σ0 is given in Fig.??. It is clear that there is a minimum

value of the distance between the two branes, the minimum occurs at σ0 =
√
κ and its value

is

∆min =
2
√
2πΓ

(
5
4

)√
κ

Γ
(
3
4

) (2.22)

Since κ is related to the world-volume gauge field, we see that only for zero electric field the

two branes can annihilate. For large σ0 the distance ∆ between the two branes grows linearly

with σ0. We can now solve (??) for σ0 by keeping fixed the distance between the branes ∆

and the number of strings, which is done by keeping the charge parameter κ fixed. We obtain

σ2
0 =

∆2 ±
√
∆4 − 4a4κ2

2a2
(2.23)

where the numerical constant a is given by a2 =
2
√
πΓ( 5

4)
Γ( 3

4)
. There are two solutions which, for

large ∆, behave as [?]

σ0 $
aκ

∆
, σ0 $

∆

a
(2.24)
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Figure 5: ∆ for κ = 1 in the Callan-Maldacena case

In the first case, the “thin throat” branch, the radius of the throat goes to zero as ∆ → ∞.

In the second case, the “thick throat” branch, the radius of the throat grows linearly with ∆

as ∆ → ∞.

3 Heating up DBI solutions by the blackfold approach

Our aim in the rest of the paper is to turn on the temperature and analyze what happens

to the BIon solution described in the previous section. We propose in this section that

the appropriate framework in which to heat up DBI solutions is provided by the blackfold

approach [?, ?]. We will motivate this here by first casting the DBI EOMs in a form that

makes apparent the generalization to the thermally excited case, as discussed in Section ??.

The latter involves the EM tensor for a black D3-F1 brane bound state, which is subsequently

obtained in Section ??.

In Section ?? we give a detailed argument for why our thermal D-brane probe, based on the

blackfold approach, should give a more accurate way to probe finite temperature backgrounds

in string theory than the Euclidean DBI probe method that has been used in the literature.

3.1 Extrinsic embedding equations from DBI action

In this section we write a general expression of the EOMs for the DBI action. This takes

the form of a set of extrinsic embedding equations. Below we shall use this to connect to the

blackfold approach of [?, ?] and thence to go to the thermal case.

Our starting point4 is the DBI action for the D3-brane given in (??). Before considering

the EOMs we first obtain the world-volume EM tensor. This can be done by varying the

action (??) with respect to the world-volume metric γab in (??), i.e.

T ab =
2
√
γ

δIDBI

δγab
(3.1)

4Our considerations are easily generalized to Dp-branes
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the EM tensor (??) becomes

T 00 =
TD3√
1− E2

, T 11 = −γ11
TD3√
1− E2

, T ii = −γiiTD3

√
1− E2 , i = 2, 3 (3.11)

where we defined

E ≡ 2πl2s√
γ11

F01 (3.12)

In the bulk, turning on the electric flux F01 on the brane corresponds to having a number

of F-strings along the σ1 direction of the brane. Call this number of F-strings k. From the

world-volume point of view we can say that we have k units of electric flux. We can relate k

to F01 as

k = −TD3

∫

V23

dσ2dσ3∂
√

− det(γ + 2πl2sF )

∂F01
=

TD3

TF1

∫

V23

dσ2dσ3√γ22γ33
E√

1− E2
(3.13)

If we consider the case in which γab and F01 are constant the above equation can be written

as kTF1 = V⊥TD3E/
√
1− E2 where V⊥ is the area in the σ2,3 directions perpendicular to the

F-strings. Using this we see that the mass density of the brane can be written as

T00 =

√

T 2
D3 +

k2T 2
F1

V 2
⊥

(3.14)

We recognize this as the 1/2 BPS mass density formula for the D3-F1 brane bound state in

the case of a single D3-brane and k F-strings.

Energy-momentum tensor for D3-F1 bound state from black brane geometry

We now turn to obtaining the EM tensor for N D3-branes with an electric field on, corre-

sponding to k units of electric flux, at non-zero temperature. We can obtain this from a black

D3-F1 brane bound state geometry assuming that we are in the regime of large N and gsN .

The D3-F1 black brane bound state background has the string frame metric [?]

ds2 = D− 1
2H− 1

2 (−fdt2 + dx21) +D
1
2H− 1

2 (dx22 + dx23) +D− 1
2H

1
2 (f−1dr2 + r2dΩ2

5) (3.15)

where

f = 1− r40
r4

, H = 1 +
r40 sinh

2 α

r4
, D−1 = cos2 ζ + sin2 ζH−1 (3.16)

and with dilaton field φ, Kalb-Ramond field B(2), and two- and four-form Ramond-Ramond

gauge fields C(2) and C(4) given by

e2φ = D−1 , B01 = sin ζ(H−1 − 1) cothα

C23 = tan ζ(H−1D − 1) , C0123 = cos ζD(H−1 − 1) cothα
(3.17)

We now proceed to read off the EM tensor, the D3-brane and F-string currents, and the

thermodynamical parameters as seen by an asymptotic observer. However, we first need to

consider how the non-trivial world-volume metric γab can enter in this. Reading off the EM

tensor from (??) we find it in the (t, xi) coordinates for which the world-volume metric is just

−dt2 +
∑

i(dx
i)2. Instead we want the EM tensor with a world-volume metric of the form

γabdσ
adσb = −dσ2

0 + γ11dσ
2
1 + γ22dσ

2
2 + γ33dσ

2
3 (3.18)
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read off stress tensor and D3-brane current 

since this is the most general form needed for our computations in this paper, i.e. a diagonal

metric without red-shift factor. To transform the resulting EM tensor in the (t, xi) coordinates

to the above world-volume coordinates σa we can simply make the rescaling t = σ0, xi =
√
γiiσi, i = 1, 2, 3. One could infer here that such a rescaling is problematic since in general

the world-volume metric γab varies according to where we are situated on the brane. However,

to the order we are working in we are precisely suppressing the derivative of the metric in the

EM tensor, just as they are suppressed in the DBI EM tensor (??). With this in mind we

read off the EM tensor in the σa world-volume coordinates

T 00 =
π2

2
T 2
D3r

4
0(5 + 4 sinh2 α) , T 11 = −γ11

π2

2
T 2
D3r

4
0(1 + 4 sinh2 α)

T 22 = −γ22
π2

2
T 2
D3r

4
0(1 + 4 cos2 ζ sinh2 α) , T 33 = −γ33

π2

2
T 2
D3r

4
0(1 + 4 cos2 ζ sinh2 α)

(3.19)

using for example [?]. The D3-brane current is

J0123 =
2π2T 2

D3√
γ

cos ζr40 coshα sinhα (3.20)

The number of D3-branes in the bound state is N . Thus, using (??) we find

cos ζr40 coshα sinhα =
N

2π2TD3
(3.21)

Furthermore, imposing that we have k F-strings gives

k

N
=

TD3

TF1

∫

V23

dσ2dσ3√γ22γ33 tan ζ (3.22)

We also give the thermodynamic quantities associated to the horizon, that will be used in

what follows. The temperature T and entropy density S are

T =
1

πr0 coshα
, S = 2π3T 2

D3V(3)r
5
0 coshα (3.23)

while the local D3-brane and F-string chemical potentials are

µ(local)
D3 = tanhα cos ζ , µ(local)

F1 = tanhα sin ζ (3.24)

Extremal limit

As a check we consider here the extremal limit of the EM tensor of the black D3-F1 brane

bound state. We see from (??) that the extremal limit is to take r0 → 0 keeping ζ and

r40 coshα sinhα fixed. This gives T = 0 as it should and the EM tensor

T 00 =
NTD3

cos ζ
, T 11 = −γ11

NTD3

cos ζ
, T ii = −γiiNTD3 cos ζ , i = 2, 3 (3.25)

along with the formula (??) for k. We see that the above formulas match (??) and (??)

provided we identify E = sin ζ and put N = 1.
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Separation distance in finite T wormhole BIon 

! 

z 

D3 

Figure 1: Illustration of the setup, showing the embedding function z(⇥) and the definition of the

parameters ⇥0 and �.

In [1] we analyzed the separation distance � as a function of the minimal radius ⇥0 for

a given temperature T̄ . The results of this analysis are most easily illustrated by the Figs. 2

where we plotted � versus ⇥0 for T̄ = 0.05, 0.4, 0.7, 0.8. Note that we set � = 1 without loss of

generality since we can reinstate a general � by the transformation ⇥0 �
⇥
�⇥0 and� �

⇥
��.

For comparison the figures also include the � versus ⇥0 curve for the zero temperature case,

for which the wormhole solution is characterized by a “thin throat” branch with small ⇥0
and a “thick throat” branch with large ⇥0 for fixed �. Instead when the temperature is

turned on, the separation distance � between the brane-antibrane system develops a local

maximum in the region corresponding to the zero temperature thin branch. This is a new

feature compared to the zero temperature case. The existence of this maximum gives rise to

three possible phases with di⇥erent ⇥0 for a given �. For small temperatures and/or large ⇥0
the � as a function of ⇥0 resembles increasingly closely the zero temperature counterpart.
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Figure 2: On the figures the solid red line is � versus ⇥0 for T̄ = 0.05 (top left figure), T̄ = 0.4 (top

right figure), T̄ = 0.7 (bottom left figure) and T̄ = 0.8 (bottom right figure) while the blue dashed line

corresponds to T̄ = 0. We have set � = 1.

In the following we denote the value of � at the local maximum as �max and � at

3

new feature: three (or one phases) for given Delta instead of two (at zero T) 
 -brane separation cannot become arbitrarily large on thin throat branch 
-  for low T large part of curve like zero T, but still max brane separation 
- large T: only thick throat branch 



Comparison of phases in canocial ensemble 

given ⇤cut. We can furthermore infer that the dependence on ⇤cut only enters as an additive

constant. Indeed, if we consider two values ⇤0 = a1, a2 with a1 < a2 < ⇤cut we find that

�F(T̄ ,�(a1); a1) � �F(T̄ ,�(a2); a2) does not depend on ⇤cut. We thus see that we can use

(2.6) to measure the free energy since we only need the relative measure of the free energy

between the possible branches.

2.2 Comparison of phases

We now compare the free energy of the three distinct phases found in [1] for temperatures

not too large.

We first consider the free energy for a fixed temperature. For definiteness, we consider

the behavior of the free energy for the temperature T̄ = 0.4. As one can see from Figure

3 we expect the qualitative features to be the same for the whole range of temperatures T̄

from 0 to T̄b ⌅ 0.8. The (⇤0,�) diagram for T̄ = 0.4 is displayed in Figure 2. In Figure 4

we display �F(T̄ ,�(⇤0);⇤0) as a �F versus � diagram for T̄ = 0.4 (with ⇤cut chosen so that

the upper branch starts with zero free energy). We see from these diagrams that in the range

of separation distances � from �min ⌅ 3.7 to �max ⌅ 6.3 the thermodynamically favored

branch, i.e. the branch with least free energy, is given by the branch in Figure 2 that goes

between �min to �max with d�/d⇤0 < 0. Instead when � ⇤ �max there is only one available

branch. However, as discussed below we believe this is an unstable saddlepoint. Qualitatively,

this is the behavior of the phases for temperatures 0 < T̄ ⇥ T̄b ⌅ 0.8. For T̄ > T̄b we have at

most one available phase for a given �.

Turning Point
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F

Figure 4: The free energy �F versus � for T̄ = 0.4 and ⇥ = 1.

Consider instead a fixed separation distance � = �� between the two systems of branes.

Increase now the temperature slowly from zero temperature. Then the thermodynamically

dominant phase is the phase for which d�/d⇤0 < 0, i.e. the phase that goes from �min

to �max. Above the critical temperature T̄ = T̄c for which �� = �max(T̄ ) the phase with

d�/d⇤0 < 0 does not exist anymore and the only available phase is the one with d�/d⇤0 > 0

that starts at �min. Note that we used here that �max(T̄ ) is a monotonically decreasing

function of T̄ , see Figure 3. However, we believe this phase is an unstable saddlepoint so the
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Figure 6: Left side: Free energy for T̄ = 0.4 and � = 5. Right side: Heuristic depiction of potential

for T̄ = 0.4 and � = 5.

maxima and one local minimum. The local minimum is, obviously, the phase with the least

free energy. Thus, we expect that this phase is stable to small perturbations. Instead for the

other two phases, corresponding to the two local maxima, a small perturbation could move

the system increasingly further away from equilibrium.

For the large �0 phase, what can happen is that having a perturbation that makes �0
smaller would tend to take the system towards the stable equilibrium solution. So, one

would presumably end up in the stable configuration. Instead, making a perturbation that

would tend to increase �0 would result in a run away type of instability. We believe this

should be in the form of a time-dependent solution where the radius of the wormhole keeps

increasing and thus the brane-antibrane system will disappear. Thus, one could think of this

as a brane-antibrane annihilation process. This is presumably related to open string tachyon

condensation of the brane-antibrane system [6].

For the small �0 phase, a perturbation that would increase �0 would presumably end up

in the stable phase. Instead, a perturbation that would tend to decrease �0 should be such

that it makes the wormhole more and more thin. We speculate that this process could end up

in annihilating the F-string flux from the branes and the end point would thus be the system

of infinitely extended flat branes and anti-branes, but without the wormhole.

Finally, one could contemplate what happens for other values of �. Taking � = 4 would

remove the local maximum for small �0 as one can see from Figure 2. Instead taking � = 7

both the local maximum for small �0 and the local minimum would disappear. Thus, one is

left with an unstable phase.

3 Thermal spike and correspondence with non-extremal string

In this section we explore the question of whether there is a configuration of k coincident

F-strings ending on N coincident D3-branes at non-zero temperature. Unlike for the zero

temperature case, where this configuration for N = 1 is described by the infinite spike BIon

solution, the analysis of the non-zero temperature case done in [1] showed that the non-zero

temperature analogue of the BIon solution does not allow for an infinite spike. We begin

this section with some general considerations, and then we propose how the configuration in
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Thermal spike ?  

argue for the matching here by using the blackfold solution beyond its validity to show that

its physical behavior is very close to that of k non-extremal F-strings, and the slight numerical

di⇥erences can be explained by the fact that we do not have supersymmetry to protect us.

We illustrate the matching of the blackfold solution and non-extremal black F-string solution

at the correspondence point in Figure 7.

Figure 7: Illustration of the matching of the D3-F1 blackfold configuration and the non-extremal

black F-strings at the correspondence point.

-Correspondence point

Non-extremal black F-strings

D3-F1 blackfold configuration

z direction
6

3.2 Correspondence point for matching of throat to F-strings

In [1] we found a solution using the blackfold approach for a spherically symmetric config-

uration of N D3-branes with a throat supported by an F-string flux such that the F-string

charge measured over each spherical surface is k. The throat ends in a minimal two-sphere of

radius ⇥0. In this section we find a regime of the solution of Ref. [1] in which it behaves like

k non-extremal F-strings at the end of the throat, i.e. at ⇥ = ⇥0.7 This enables us to match

the D3-F1 blackfold configuration to k non-extremal black F-strings. As we explain below,

this means that the end of the throat ⇥ = ⇥0 serves as the correspondence point between the

two di⇥erent solution, as illustrated in Figure 7.

Since we are aiming to generalize the extremal infinite spike solution of [3] to non-zero tem-

perature, as discussed above in Section 3.1, we approach this problem in the low temperature

limit in which we are close to extremality. We begin therefore this section by examining the

thermodynamics of the supergravity solution of k non-extremal F-strings at low temperature,

and subsequently find a corresponding regime of the non-extremal D3-F1 solution of [1].

Non-extremal black F-strings at low temperature

The supergravity solution for k coincident non-extremal black F-strings lying along the z

direction is

ds2 = H�1(�fdt2 + dz2) + f�1dr2 + r2d�2
7

e2� = H�1 , B0z = H�1 � 1 , H = 1 +
r60 sinh

2 �̄

r6
, f = 1� r60

r6

(3.2)

7In order to compare our findings with the results for a non extremal fundamental string we work in this

section in terms of the quantities (T,N, k), TF1 and TD3 instead of � and T̄ .
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