Tracking with GEM Detectors at High Luminosities The SBS Programme in Hall-A of Jefferson Lab.

John R.M. Annand Department of Physics and Astronomy

Hall-A of Jefferson Laboratory

- High Resolution Spectrometers (HRS) δp/p ~ 10^{-4,} Modest angle/momentum acceptance
- Large Acceptance Spectrometers: $\delta p/p \sim 10^{-2} - 10^{-3}$ larger acceptance in angle and momentum
- BigBite (originally e' detector @ AMPS internal target facility)
 Both Hadron and Electron detectors Many new experiments possible.
- CEBAF Accelerator Upgrade
 12 GeV Hall-D
 11 GeV Hall A,B,C
 Glasgow involved in CLAS12 & Hall-A
- 1st Hall-A 11 GeV Beam late 2013 Continue to use upgraded BigBite Extend the concept with big brother... Super BigBite Spectrometer (SBS)

http://hallaweb.jlab.org/12GeV/SuperBigBite/ irectly

The SBS Programme in Hall-A

Jefferson Lab PAC-35 (2010) Recommendations

Proposal	Spokes- Person	Title	Hall	Days Requested	Days Awarded	PAC Rating
PR12-06-101	G. Huber	Measurement of the charged pion form factor to high Q^2	С	52	52	A
PR12-07-104	G. Gilfoyle	Measurement of the neutron magnetic form factor at high Q ² using the ratio method on deuterium	В	56	30	A-
PR12-07-108	B. Moffitt	Precision measurement of the proton elastic cross-section at high Q ²	А	31	24	А-
PR12-07-109	L. Pentchev	Large acceptance proton form factor ratio measurements at 13 and 15 (GeV/c) ² using recoil polarization method	A	60	45	A-
PR12-09-003	R. Gothe	Nucleon resonance studies with CLAS12	В	60	40	B+
PR12-09-006	A. Semenov	Neutron electric form factor at Q ² up to 7 (GeV/c) ² from ² H(e,e'n) ¹ H via recoil polarimetry	С	66		Unrated
PR12-09-016	B. Wojtsekh- owski	Measurement of the neutron electromagnetic form factor ratio G^{n}_{E}/G^{n}_{M} at high Q^{2}	А	58	50	A-
PR12-09-019	B. Wojtsekh- owski	Precision measurement of the neutron magnetic form factor up to Q ² =18 (GeV/c) ² by the ratio method	А	48.5	25	B +

Nucleon Elastic Form Factors $G_{Ep}, G_{Mp}, G_{En}, G_{Mn}$ Polarised SIDIS

Run at luminosities up to $\sim 10^{39} \,\text{s}^{-1} \text{cm}^{-2}$. Can detectors withstand the counting rates? Expect rates in forward elements $\approx 500 \,\text{kHz/cm}^2$, mainly soft photons.

Expect beam late 2013...use mainly well-tried technology

SBS Configured for Recoil-Proton Polarimetry

- High Luminosity: 8 x 10³⁸ cm⁻²s⁻¹
- Support high background: 500 kHz/cm² (low energy photons mainly)
- Forward angle
- Large acceptance
- Good angular (0.2 mr) and reasonable momentum (0.5% @ 4-8 GeV/c) resolution
- Flexibility: use the same detectors in different experimental setup
- 2 tracker geometries, same base module

1st front, momentum, angle, vertex

2nd polarimeter, asimuthal scattering

Also GEM in BigBite and BigCal

Hall-A SBS GEM Collaboration

Hall-A GEM Collaboration

Evaristo Cisbani, INFN Roma (Sanità), Italy Nilanga Liyanage, University of Virginia, USA

University of Glasgow, Scotland UK Hall-A, Jefferson Laboratory, USA Norfolk State University, USA College of William and Mary, USA

The design and realisation of the GEM trackers for Hall-A makes full use of experience gained at COMPASS. thanks B. Ketzer for arranging 32 x 32 cm² GEM foils

GEM foils and ReadOut Boards (ROB) from CERN Micro Pattern Gas Detectors Group GEM foils also from Tech-Etch Inc. MA, USA.

Preliminary Tracking Requirements Hall-A 11 GeV

Experiments	Luminosity	Tracking Area	Resolution		on
many more planned	(s ⁻¹ .cm ⁻²)	(cm²)	Angular	Vertex	Momentum
	High Rates	Large Area	(mrad)	(mm)	(%)
$G_{_{Mn}}$ or $G_{_{En}}$	up to 7.1037	40 x 150	< 1 < 2		0.5%
Hadron Arm BNL HCalo BigBen		and			
17 m 450.48		50 x 200			
BigBite GasCher					
Electron Arm					
G _{Ep} (5)	up to 8-10 ³⁸	40 x 120,	Front	~ 1	0.5%
Proton Arm INFN GEM		50 x 200	<0.7		
BigBen Target 45D45		and	Pol.		
Beam		80 x 300	~1.5		
Electron Arm	GEMs OK bu	t tracking in high	backgrour	d-hit env	ironment
Al filter Calorimeter GEM	requires inve	stigation			
SIDIS	up to 2.1037	40 x 120,	~ 0.5	~1	< 1%
Hadron Arm INFN NSF RICH DOE/Dubna BNL GEM HCalo		40 x 150			
Target BigBen avos		and	Posit	on Resc	lution
Beam BigBite		50 x 200	~ 70	um reau	ired
Electron Arm CEM ECalo INFN INSF					

GEM Tracker Module Configuration for SBS

GEM Tracker Channel Accounting

Tracker	Area (cm²)	Number of Chambers	Readout	Pitch (mm)	Modules/ Chamber	Total Modules	Total Readout Channels
Front Tracker p arm	40 x 150	6	2D 4(x/y) 2(u/v)	0.4	1 × 3	18	49000 + 13500
2 nd & 3 rd Tracker Polarimeter	50 x 200	4 + 4	2D 2(x/y) 2(u/v)	4 × 0.4	1×5	20 + 20	13600 + 13600
Coord. Detector e' arm	80 x 300	2	1D y + y	1.0	2 × 6	24	12000

Total channels 101700

Last 2 Front Tracker modules have strips cut at the middle (half length strips)to reduce strip occupancy to facilitate track finding. 2nd and 3rd Trackers for polarimetry have 4 readout strips combined...1.6 mm pitch.

Modular Chamber Construction

March ender Distribute	Frame width	(mm)	5	6	7	8	9	10	
Mechanical Rigidity	Maximum Sag	(μm)	180	24	21	19	16	12	
				/					
 Flexible Configuration to service different in the same base redifferent tracker get Size: 40 x 50 cm² acting frame width. Tensi 3 GEM foils (double for the same base redifferent tracker get) 20 strip ROB 0.4 mm Signal amplitude recomposition redifferent tracker get) Fither x-y or u-y strip 	n of Detectors experiments module to build cometries tive area + 0.8 of oned 30 kg. mask technolog n pitch orded \rightarrow esolution	cm Jy)						Top Al Frame Entrance foil Drift foil GEM 1 Polyglass spacer GEM 2 GEM 3 - 2-D Readout foil	
 Last 2 chambers from 	t tracker strips	in 2 hal	ves	4	The second		Br-	Bottom honeycomb	
 Polarimeter chambers 4-strips combined 1.6 mm pitch 									
Coordinate Detector: 1D y readout, 1 mm pitch									
for BigCal e' detec	tor in G _{ep} (5). Bi	$gCal \rightarrow$	x coo	ord.					

Chamber Material Budget

Top View

- Based on the COMPASS GEM
- SBS has single honeycomb
 & smaller thickness of Cu
- Minimise material
- Background (soft-photon conversion)
- Multiple scattering, angular resolution

	Quantity Thickness		Density	X0	Area	Х0
	(µm)		(g/cm3)	(mm)	(%)	(%)
Window						
Mylar	1	10	1.39	287	100	0.3484
Drift						
Copper	1	3	8.96	14.3	100	2.0979
Kapton	1	50	1.42	286	100	1.7483
GEM Foil	_					
Copper	6	3	8.96	14.3	80	10.0699
Kapton	3	50	1.42	286	80	4.1958
Grid Spacer						
G10	3	2000	1.7	194	0.8	2.4742
Readout						
Copper-80	1	3	8.96	14.3	20	0.4196
Copper-350	1	3	8.96	14.3	75	1.5734
Kapton	1	30	1.42	286	20	0.2098
G10	1	120	1.7	194	100	6.1856
NoFlu glue	1	60	1.5	200	100	3.0000
Honeycomb						
Nomex	1	6000	1	13125	100	4.5714
G10	2	120	1.7	194	100	12.3711
Gas						
(CO2)	1	9000	0.0018	18310	100	4.9153

High Voltage Distribution

- 7 independent HV channels for each chamber Must ramp up/down in phase
- 3 HV identical doublets + 1 for drift (same on all GEM foils); each doublet serves one GEM foil, unused will be cut.
- SMD protection resistors, under the thin frame
- GEM foils stretched at 30 kg tension

Layout of Readout Electronics

- Cards and modules supported by outer carbon-fibre frame running round the entire chamber.
- Readout from every side of ROB Required for double x-y strip density Required for diagonal u-v Better mechanical balance
- Extension feeds into ZIF connectors No soldering on the readout foil Permits safer bending

 Frame width minimum consistent with rigidity to minimise dead area Precise machining around the ZIF terminals necessary.

Front End Card (FEC)

 Front End card based on COMPASS original design (private comm. *M.Böhmer, I.Konorov, TUM*)

- Uses APV25 chip. Pipeline ASIC (CMS Si Tracker)
- 128 GEM Channels
- Bus like digital lines
 (CLOCK, trigger I2C) & Low
 Voltages
- Single differential line for the serial ANALOG out
- ZIF connectors on the GEM side (no soldering on readout foil); minimize thickness
- 800 FEC needed
- Prototypes under test

VME64x Controller

- Compliant JLab/12 VME64x VITA 41 (VXS) standard also standard VMEbus
- Detachable ADC module extend FEC-VME64x distance
- 2 x 64 MB SDRAM
- Expected event size ~20 kB, trigger rate < 5 kHz,
- Expected data rate < 100 MB/s (3-sample AVP25 readout?)</p>

Monte Carlo Simulations

Occupancy Levels in Chambers

 $G_{E_0}(5)$ Experiment..highest design luminosity so far: 8 x 10³⁸ s⁻¹.cm⁻²

Tracker	Area of interest	Rate,	Strip pitch,	Strip occu-	Number of pseudo-	Number of
	for tracking, cm^2	kHz/cm ²	mm	pancy, %	tracks per event	strip planes
First	0.20 x 18	400	0.4	13.5	1.65×10^{-2}	12
Second	$2\pi~0.35^2$	130	1.6	7.4	8.7×10^{-6}	8
Third	π 4.8 2	64	1.6	3.6	5.2×10^{-4}	8
BigCal	$\pi \ 1.2^2$	173	1	2.4	2.8×10^{-2}	2

- SBS @ 14°, BigCal e' @ 39°.
- Rate predictions: DINREG, P. Degtiarenko, JLab. Model region around target in some detail. Similar simulations give good predictions for current 6 GeV experiments
- Occupancy I = trS, t = integration time, r = rate, S = strip area.

t =3 x 25 ns front tracker, 2 x 25 ns 2^{nd} & $3^{rd.}$ tracker.

S assumes strip width + 0.4 mm (extent of e' cloud at ROB)

- Elastic kinematic correlation required to distinguish real tracks from large number of background hits.
- Hit position in electron arm: vertical coordinate GEM, horizontal BigCAL... target length dominates horizontal uncertainty, so GEM not useful here
- Elastic proton kinematic range on front tracker from $\pm 3\sigma$ cut around e' hit position
- Reconstruct proton track in FT consistent with e' track
- Reconstruct track in 3rd aided by coordinate info from rear hadron calorimeter
- Reconstruct track in 2nd using already reconstructed tracks in FT and 3rd

Track Reconstruction Software (O.Hansen Hall-A) Tree-Search Algorithm

- Proposed Dell'Orso et al., NIM A287, 436 (1990)
- Recursive template matching
- Computationally fast and efficient in memory use
- Proven at HERMES for various MWDC
- Used Qweak for HDC and VDCs
- Used in Hall-A BigBite MWDCs, Gen, SIDIS SSA
- Appears suitable for SBS front tracking
- Conversion of software to handle GEM as opposed to MWDC under way
- No (MWDC) L/R ambiguity handling
- Weighted averaging strip signals
- Exploit amplitude & time correlations
- Works better with several redundant planes

Tests of Prototype GEMs

- Tests with 3 GeV beam @ DESY
- Parasitic tests in Hall-A (e,e'x)
- So far 10 x 10 cm² prototype with Gassiplex readout.
- Plan similar tests this year of 40 x 50 cm² GEM module
- Study behaviour in high rate environment
- Commission FEC (AVP25)
- Test cluster analysis and fitting
- Study tracking performance at high multiplicity
- Require sufficient "redundant" planes

GEM Beam Tests

DESY

- DESY-II Test area low intensity e⁻ beam 1 – 6 GeV
- 2 10 x 10 cm² 2D prototypes with Gassiplex readout
- Characterise small chamber
- Prepare for 40x50 cm² module test expected 2010
- Behaviour of full-size module
- Fine-tune design/construction
- Test APV25 based FEC

Hall-A

- 4 10 x 10 cm² GEM behind the VDCs of hall A HRS
- PREX ²⁰⁸Pb(e,e') experiment...6 GeV, high luminosity
- Good correlation; tracks projected from VDC and GEM tracks.
- Preliminary resolution (from residuals)
 ~ 60 microns.
- Continue Autumn 2010 5-chamber telescope with APV-25 readout

Beam Test Analysis

DESY

- 10 x 10 cm² prototype
- Amplitude correlation between x and y strips
- Useful in rejecting non-track accidentals

- 10 x 10 cm² prototype
- Strip pitch of 400 mm
- Correlated with HRS VDC track reconstruction

Hall-A

Obtain a position resolution of ~ 60 mm

Rediduals (string

Time Lines

Overall SBS Time Lines Design Construction Testing Installation Commissioning CEBAF down for upgrade

Backup: Electronics layout and outer support

Cards and modules are supported by an outer aluminum frame which runs all around the chamber.

Optimization is in progress.

JLab 22/Jan/2010 SBS - Review

