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Abstract

The main goal is to improve the traditional Discrete Phase Shift Anal-

ysis and combine it with a different theoretical constraits followed from

FDR, Zero Trajectories and PWDR.

1 Motivation

Since completion KH and CMU analyses there were no valuable global phase
shift analyses in pion-nucleon scattering. There are at least 2 main reasons:

1. The loss of interest to pion-nucleon physics.

2. A huge efforts to execute analysis.

The majority in physical community are satisfied by a simple treatment of
the Fermi series in partial wave parameter space. Just the trivial ”student’s”
fitting of the data or oversimplified model-depended approaches. No headache
but a lot of speculations around physics. This way was chosen by R.A. Arndt.
——————————————————————————————————

We are not satisfied in this situation and going to take into account all
advantages of KH-CMU approaches, develope the new one and improve the
Discrete Phase Shift Analysis Core as much as possible.

To be free from additional physical problems we have chosen the simplest
case of π+p scattering to test our code:

1. No problem with an isospin violation. Pure isospin 3/2 state.

2. There are no Discrete Ambiguities up to 750 MeV/c. Unique solution.

3. Existing EM Tromborg Correction.

4. The Data Base is not so big.

As a basic Code for improvement we have taken PNPI version of Discrete Phase
Shift Analysis.
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2 Problems

If to forget about qualified manpower and financial support one can define two
classes of problems in practical phase shift analyses,- “Experimental” and “The-
oretical”. This subdivision is a little bit artificial but very important. The first
kind is usually thoroughly hidden and out of discussions.

1. “Experimental”.

If to be honest and to calculate χ2/Ndf or Confidence Level for any Phase
Shift Analysis using the complete Data Base we’ll see immediately that
χ2 is too large and CL goes to Zero. It means that the confidence of the
analysis is negligiable and the results are absolutely unreliable.

Other words the location of this analysis is in a waste-basket.

The traditional solution of this problem is in a purifying of the Data Base.
There are two aspects of this approach: external inconsistency between
different experiments and internal inconsistency (bad χ2 for some points in
certain experiment). The both kinds of inconsistencies are terminated by
very subjective and violent way: some expert’s team just “recommended”
to throw away certain experiments from the Data Base according to “4-
star” classification.

In spite of these efforts the CL of the data description still hasn’t reliable
level.

————————————————————————————————
More then 10 years ago it was proposed new method of data analysis taking
into account argument’s errors and acceptances,- Argument Scaling Anal-
ysis. On this way the problem of inconsistency is resolving machinery in
multi-dimensional space. We would follow it including in the analysis

(a) acceptances calculations and

(b) argument’s uncertainties.

The first one means the smearing calculation of any observable over the
experimental acceptances. It is very simple and very important where the
observable has some structures. What we need is an additional experi-
mental information.

The second one is also simple, but complicated. We have to introduce
new set of parameters for every experiment and treat them as a con-
strained ones from the exepimental resolutions. Here we have to modify
our code seriously. The effect of the argument scaling is very important
not only where we have structures in the observables, but also where they
are changing very fast in the argument’s dimension.

————————————————————————————————
For example let’s look at the simplest case of π+p total cross sections.
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Figure 1: π+p total cross sections.
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Figure 2: Deviation plots.
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Figure 3: Deviation plots 150-450 MeV/c.

5



2. “Theoretical”.

There are some theoretical constraints which follow from the analyticity
of the amplitudes and have to be included in the analysis. We have chosen
the next ones:

(a) FDR.

They provide us the Real parts of the forward amplitudes from the
interpolated total cross sections, “fixing” the forward point for dif-
ferencial cross sections (hadronic). Both Real and Imaginary (total
cross sections) parts are treated as “experimental” data as a result
of interpolation for any momentum. In elastic region they are de-
creasing the correlation between phases extremely stong, because we
know forward point and integral of the differential cross sections and
the variations are responsible only for the shape of it.

There are two ways how to calculate FDR:

i. To take dispersion integral.

ii. To use Pietarinen’s expansion.

We have chosen Pietarinen’s approach and used it iteratively, spread-
ing our momentum interval step by step. In detail this calculations
will be given in report of Pekko Metsa.

(b) PWDR.

This dispersion relations help us to resolve the Cut-off problem. As
an initial approach we have used the KH and PNPI results for the
small amplitudes and extrapolated them to the threshold according
to the effective-range approximation. This procedure was also iter-
ative and gave us the tails of the high waves up to the threshold
(H-wave approach). So, the small phases were treated under extrap-
olation constraints as an “experimental” ones. The phases more than
1o were treated as a free parameters.

(c) Zero Trajectories.

Zero Trajectories formalism helps us not only to calculate any discrete
abmiguities but can be used as a reflection of the analitic structure
of the amplitude. For πN scattering if our amplitude

F (w) =
Fo

wL

∏2L

i=1

w − wi

1 − wi

(1)

w = eiΘ, 0 ≤ Θ ≤ 2π

has two poles (say, nucleons) in s and u channels, then near the double
pole

F ∼
g2

s − m2
+

g2

u − m2
=g2 s + u − 2m2

(s − m2)(u − m2)
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we have a zero at u = 2m2−s, “double pole killing zero”. Such zeros
can propogate into physical region and we woud have zero for

| F (w) | 2 =
dσ

dΩ
(1±P )

or P = ∓1 and minimums in differential cross section. Trajectories of
these zeros can be analiticaly continued into any unphysical region.
So, this alternative set of parameters, Zeros (wi), is a good choice for
analysis.

They can be expressed in terms of partial waves. Close to the thresh-
old (L=1):

−
2

3

fo+

f1+

= w1 + w2, 2
f1−

f1+

= 3w1w2 − 1

w1,2 =
−f0+ ±

√

f2
0+ − 3f2

1+ − 6f1−f1+

3f1+

and for q → 0, w1 → 0, w2 → − 2

3

f0+

f1+
→ ∞. This situation is

general. When we are moving from the threshold, the Zeros are
appearing by pairs from 0 and ∞ approaching the physical region.
The parametrization of these trajectories can be used as a additional
theoretical constraint to resolve the Cut-off problem.

Besides if to look at the formular(1) one can see that it is invariant for
forward scattering amplitude in terms of zeros wi. It means, varying
zeros, the forward point and integral of the diffential cross sections
are keeping the same. Only the shape is changing. And we can define
the Zeros as a

wi ≡ Shape Parameters.

It also can help us in analysis of the data, applying the smoothness
on the variation in the shape of any observable.

There are some technical problems in practical application these
Zero’s properties in the Code. These problems are too special and
can be omitted in this report. We did not resolve all of them up to
now and hope to the next iteration this modification will be com-
pleted as an automated machinery code. But all Zeros were under
the control and we have used them in some cases as an additional
constraints.

Now let’s look what we have with our Zeros and try to make some
conclusions. Hope some of them will be surprising for You.
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Figure 4: Zeros.
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Figure 5: Radiuses and Phases(angles) of Zero Trajectories.
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Figure 6: Zero Plot for Trajectory W1.
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Figure 7: Zero Speed Plot fo Trajectory W1.
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Figure 8: Zero Plot for Trajectory W2.

12



Figure 9: Zero Speed Plot for Trajectory W2.
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3 Discrete phase shift analysis.

For the π+p interaction a discrete phase shift analysis has been performed in
the range k = 0.077− 0.725 GeV/c at 77 different momenta. The main features
of the analysis are :

1. We have used all data available from threshould up to 725 MeV/c.

2. To avoid an energy shifts between different data sets the interpolation
technique was employed, parabolic or linear, depending on the data set.

3. Forward scattering amplitude was constrained iteratively by Pietarinen’s
technic.

4. The normalization were allowed to float according to experimental sys-
tematic uncertainty.

5. Angular scaling was applied to all data, based on the experimental Reso-
lutions.

6. All observables were calculated taking into account experimental Accep-
tances.

7. Tromborg EM corrections have been used to extract the hadronic ampli-
tudes.

8. There were no cut-off in angular momentum approaching the threshold.
To stabilize the low energy behaviour we have used effective-range param-
etization based on the PWD results and the smoothness of the Zero trajec-
tories. The maximal angular momentum was equal to 6 (H-wave approach,
11 partial waves).

9. Total inelastic cross sections on two pion production were used as addi-
tional constraint in the analysis.

10. The Analysis has an iterative nature and is not completed. There is plenty
of room for improvements.

4 Results.

The Confidence Level of the analysis is 90÷100% depending on the energy.
Only negligible number of the data points were eliminated with a χ2 > 4 due
to inappropriate angular dependence.

Because of a huge amount of output information I limit myself only by slide
show with a global results and some certain energy outputs.

Who are interested in more complete information on the data description
may request it and we’ll take it from the Helsinki Data Base in a few minutes
online.
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Figure 10: Total cross sections.
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Figure 11: Real part for Forward scattering amplitude.
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Figure 12: Total Inelastic cross sections.
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Figure 13: 77.1 MeV/c Original Dentz-2004 and Bertine-1976.
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Figure 14: 77.1 MeV/c Corrected Dentz-2004 and Bertine-1976.
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Figure 15: 77.1 MeV/c Corrected Dentz-2004 and Bertine-1976.

20



Figure 16: 77.1 MeV/c Deviation plots.
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Figure 17: 426.3 MeV/c Corrected data.

22



Figure 18: 426.3 MeV/c Corrected Sadler-1987, Gordeev-1981, Rogers-1961,
Foote-1960 and Ogden-1965.
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Figure 19: 426.3 MeV/c Corrected Dubal-1977, Gordeev-1981, Gorn-1973, and
Supek-1993.
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Figure 20: 426.3 MeV/c Deviation plots for differential cross sections.
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Figure 21: 426.3 MeV/c Deviation plots for P,R and A.
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Figure 22: 725.3 MeV/c Corrected Gordeev-1981, Rothschild-1972 and Ogden-
1965.
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Figure 23: 725.3 MeV/c Corrected Martin-1975.
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Figure 24: 725.3 MeV/c Deviation plots for differential cross sections.
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Figure 25: 725.3 MeV/c Deviation plots for polarization.
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Figure 26: Argand plot for S31-amplitude from discrete phase shift analysis and
effective range approximation.
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Figure 27: Effective range parametrization and estimation of the energy interval
validity.
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Figure 28: Result of the multy-parameter S31-amplidute parametization in the
whole energy interval. The phase shift δS31 normalized with |aS31| q as a func-
tion of the q2. Relative error of the scattering length is ∆aS31/aS31 ' ±2%.
There is good agreement with hydrogen and Matsinos results, but dramatical
difference compare to KH80, 32± 6%, and Arndt, 19 ± 3%, solutions.
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Figure 29: P33 Phase Shift.
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Figure 30: Renormalized P33 Phase Shift as a function of q .
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Figure 31: Renormalized P33 Phase Shift as a function of q2 .
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Figure 32: P33 Argand Plot.
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Figure 33: P33 Speed Plot.
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5 Conclusions.

1. Our discrete phase shift analysis is still in progress as an iterative proce-
dure and the results are preliminary.

2. New Code proved strength and reliability. We did not find weighty incon-
sistency in the Data Base.

3. There is room for code’s impovement and it is under the way both theo-
retically and practically.

4. The aS31-wave scattering length appeared to be stable at this stage and
hopefully would not be changed outside the error bars.
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