Model-independent Resonance Parameters

Saša Ceci, Alfred Švarc, Branimir Zauner Ruđer Bošković Institute
with special thanks to
Mike Sadler, Shon Watson, Jugoslav Stahov, Pekko Metsa, Mark Manley and Simon Capstick

Helsinki 2007
The 4th International PWA Workshop

Abstract

model-independent extraction of the resonance parameters is enabled by imposing of the physical constraints to the scattering matrix.

Resonant Scattering

- strong peaks of the cross section of the meson-nucleon scattering: a manifestation of the resonance phenomena,
- resonances - excited baryons,
- baryon spectroscopy - obtaining of the resonance parameters (masses and widths) from the scattering data,
- at energies close to the baryon-resonance masses, the microscopic model (QCD) is still insolvable.

The Relevant Analyses

What are relevant analyses

- Arndt FA02
- Manley MS92
- Hoehler KH8O
- Cutkosky CMB ('79)

Origin: Review of Particle Physics (PDG).

Getting spectra can be difficult

- partial-wave functions are obtained from the numerical calculations (DR, expansions on nontrivial functions),
- there are too many models, and it is not clear which one (and in which cases) should be used,
- in order for many extraction methods to work properly, some "additional" requirements must be met.

It was (allegedly) easier in the old days ...

- Transition matrix - T
- $T=T_{R}+T_{B}$
- like adding of the Feynman diagrams
or
- Caley's transform of unitary scattering matrix - K
- $K=K_{R}+K_{B}$
- the scattering matrix unitarity is conserved
or
- Phase shift - δ
- $\delta=\delta_{\mathrm{R}}+\delta_{\mathrm{B}}$
- addition of potentials

... when people were using these simple resonant contributions ...

- Resonant matrix T_{R}
- $\mathrm{T}_{\mathrm{R}}=(\Gamma / 2) /(\mathrm{M}-\mathrm{W}-\mathrm{i} \Gamma / 2)$
or
- Resonant matrix K_{R}
- $K_{R}=(\Gamma / 2) /(M-W)$

or

- Resonant phase shift - δ_{R}
- $\delta_{R}=\arctan [(\Gamma / 2) /(\mathrm{M}-\mathrm{W})]$

- T-matrix addition
- generally violates the S-matrix unitarity,
- K-matrix addition
- conserves unitarity, but the approach is not unique,
- Phase shift addition
- comes down to S-matrix multiplication (yet another model),
- in multichannel cases, order of matrix multiplications is not defined (instead of the scalar δ, we have matrix Δ, coming from $S=e^{2 i \Delta}$).

What are, then, resonant parameters?

Natural attempts

- Matrices T and K have poles:
- $\mathrm{T}=\mathrm{K}(\mathrm{I}-\mathrm{i} \mathrm{K})^{-1}$,
- $K=T(I+i T)^{-1}$.
- S has common poles with T :
- $S=1+2 \mathrm{it}$.

In baryon spectroscopy

- Pole parameters:
- pole of T matrix
- Breit-Wigner parameters:
- fit of the BW parameterization to the T (or K?) matrix
- What could be done with δ ?

The Choices We Must Make: picking the resonance contribution

- there are many possible choices - how to pick the right one?
- it is much simpler if the scattering is:
- single channel (all inelastic channels closed),
- single resonant (just one resonance contributes),
- with constant resonant "parameters".
- generalization to multichannel and multiresonance situations, with nontrivial energy dependence of background contributions and resonant parameters calls for quite elaborate approaches,
- The Assumption: energy dependent partial waves has been established properly,
- Now we must determine proper resonance parameters, and extract them.

Physical criteria

Physical conditions

- probabilities add up to one, • scattering matrix unitarity,
- time-inversion invariance,
- parity is conserved in QCD,
- total spin is also conserved,
- quantum and relativistic mechanics - occurrence of the propagators
- symmetrical scattering matrix,
 - parity is a good quantum number,
\qquad - spin is a good quantum number,
\square
\qquad - poles emerges.

Infinite cross section?!

- Propagator G
- $G^{\circ}=i\left(p^{2}-m^{2}+i \varepsilon\right)^{-1}$
- $G^{(1)}=G^{\circ}$
- masses of products greater then the propagator mass - infinite contribution to cross section at some physical energy (simple pole)

- next order - loop contribution i Σ
- $G^{(2)}=G^{\circ}+G^{\circ} i \Sigma G^{\circ}$
- even worse - pole is now second order

Scattering matrix unitarity

- scattering matrix is unitary so it can be diagonalized by some unitary matrix U
- $\mathrm{S}=\mathrm{U}^{+} \mathrm{S}_{\mathrm{D}} \mathrm{U}$
- S_{D} is diagonal matrix
- $\mathrm{S}_{\mathrm{D}}=\sum \mathrm{s}_{\mathrm{a}} \mathrm{E}^{\mathrm{a}}$
- matrix E^{a} is a vector of orthonormal basis for diagonal matrix decomposition
- We define matrices $\chi^{\text {a }}$
- $\chi^{\mathrm{a}}=\mathrm{U}^{+} \mathrm{E}^{\mathrm{a}} \mathrm{U}$
- S matrix expansion
- $S=\sum \chi^{a} s_{a}=\sum \chi^{a} e^{2 i \delta_{a}}$

$$
E^{1}-\left(\begin{array}{cccc}
1 & 0 & \cdot & 0 \\
0 & 0 & . & . \\
\vdots & \vdots & \ddots & \vdots \\
0 & . & . & 0
\end{array}\right), E^{2}-\left(\begin{array}{cccc}
0 & 0 & \ddots & 0 \\
0 & 1 & . & . \\
\vdots & \vdots & \ddots & \vdots \\
0 & . & . & 0
\end{array}\right), \cdots, E^{N}-\left(\begin{array}{cccc}
0 & \cdot & . & 0 \\
\vdots & \ddots & \vdots & \vdots \\
\vdots & . & 0 & 0 \\
0 & . & 0 & 1
\end{array}\right)
$$

The rest of the physical demands

- Other physical conditions on matrix χ :
- $\chi^{1}{ }_{\mathrm{J}}{ }^{1}, \delta^{1}{ }_{\mathrm{J}} \pi$ parity, spin and isospin conservation
- $\chi^{\top}=\chi \quad$ time inversion invariance
- $\chi^{\mathrm{a}}=\mathrm{O}^{\top} \mathrm{E}^{\mathrm{a}} \mathrm{O} \chi$ matrix has no poles on the real axis (orthogonal O instead of unitary U).
- Poles come from δ_{a} and other functions of δ_{a} :
- $\sin \delta_{a} \mathrm{e}^{\mathrm{i} \delta \mathrm{a}}, \tan \delta_{\mathrm{a}}, \mathrm{e}^{2 i \delta_{\mathrm{a}}}$
- A new question:
- What is going on with χ outside of the real axes?

Generalization of S-matrix "offshoots" by χ matrices

S-matrix "offshoots"

- matrices T, K i Δ may be derived from S matrix,
- matrices $\mathrm{S}, \mathrm{T}, \mathrm{K}$ i Δ carry the same information - what differs them is our capability to extract it,
- what is interesting is the fact that matrices K, Im Ti Re S are diagonalized by the same (real) orthogonal matrices (O).

$$
\begin{aligned}
& S=\sum_{a=1}^{N} s_{a} \chi^{a}: \quad s_{a}=e^{2 i \delta_{a}} \\
& \Delta=\sum_{a=1}^{N} \delta_{a} \chi^{a}: \quad \delta_{a}=\delta_{a} \\
& T=\sum_{a=1}^{N} t_{a} \chi^{a}: \quad t_{a}=e^{i \delta_{a}} \sin \delta_{a} \\
& K=\sum_{a=1}^{N} k_{a} \chi^{a}: \quad k_{a}=\operatorname{tg} \delta_{a}
\end{aligned}
$$

Trace - channel-dependence elimination

- $\mathrm{T}=\Sigma \chi^{\mathrm{a}} \mathrm{t}_{\mathrm{a}} \quad / \mathrm{Tr}$

$\operatorname{Tr} \chi^{\mathrm{a}}=1$

$\operatorname{Tr} \mathrm{T}=$	$\sum \mathrm{t}_{\mathrm{a}}$	$=$
$\operatorname{Tr} \mathrm{K}=$	$\sum \mathrm{k}_{\mathrm{a}}$	$=$
$\operatorname{Tr} \Delta=$	$\sum \delta_{\mathrm{a}}$	$=$
$\operatorname{Tr} \mathrm{S}=$	$\sum \mathrm{s}_{\mathrm{a}}$	$=$

Trace of the matrix χ is 1 on the real axis:

- is it χ (i.e. $\operatorname{Tr} \chi$) analytic function?
- if it is, it will have value 1 in the vicinity of the real axis as well (in the resonant area);
- then we can say this: Pole positions of the T matrix, as well as those of the K matrix, will depend on the energy dependence of phase shift δ, and will not care about the energy dependence of χ.

Resonant parameter extraction: types of parameters

S or T have pole
K has pole
Δ has "something" $\pi / 2$
δ_{a} is $\pi / 2$
$\tan \left(\delta_{\mathrm{a}}\right)$ has pole
speed plot shows peak
time delay shows peak
imaginary part of T matrix peak
(pole T)
(pole K)
(pole K)
(pole K)
("pole T")
("pole T")
(BW?)

Basically, two different ways:

- T-matrix pole
- K-matrix pole

But there could be some other possibilities ...

Up-to-date resonant parameters definitions

T-matrix pole
$\mathrm{T}_{\mathrm{R}}=\mathrm{r} /(\mu-\mathrm{W})$
Speed plot
$\left|d T_{\mathrm{R}} / \mathrm{dW}\right|=|\mathrm{r}| /\left[(\operatorname{Re} \mu-\mathrm{W})^{2}+(\operatorname{Im} \mu)^{2}\right]$
Time delay
$\mathrm{d} \delta_{\mathrm{R}} / \mathrm{dW}=\overline{(\Gamma / 2) /\left[(\mathrm{M}-\mathrm{W})^{2}+\Gamma^{2} / 4\right]}$
Hybrids
?

Poles of K and T matrices

$$
\begin{array}{r}
k_{r}=\frac{\Gamma_{r}(W) / 2}{M_{r}(W)-W} \\
t_{r}=\frac{\Gamma_{r}(W) / 2}{M_{r}(W)-W-i \Gamma_{r}(W) / 2} \\
\hline
\end{array}
$$

These are not (necessarily)

$$
\begin{aligned}
S & =\chi^{r} \frac{M_{r}-W+i \Gamma_{r} / 2}{M_{r}-W-i \Gamma_{r} / 2}+\sum_{a \neq r}^{N} \chi^{a} s_{a}, \\
\Delta & =\chi^{r} \operatorname{arctg}\left(\frac{\Gamma_{r} / 2}{M_{r}-W}\right)+\sum_{a \neq r}^{N} \chi^{a} \delta_{a}, \\
K & =\chi^{r} \frac{\Gamma_{r} / 2}{M_{r}-W}+\sum_{a \neq r}^{N} \chi^{a} k_{a}, \\
T & =\chi^{r} \frac{\Gamma_{r} / 2}{M_{r}-W-i \Gamma_{r} / 2}+\sum_{a \neq r}^{N} \chi^{a} t_{a} .
\end{aligned}
$$ parameterizations!

K-matrix Poles: The Recipe

$$
K=T /(I+i T)
$$

(i) The parameter extraction procedure starts when a full T matrix has been obtained from an energy-dependent partial-wave analysis of experimental data.
(ii) Contrary to the usual prescription, where Eq. (11) is used to obtain resonance parameters from the T matrix in a model-dependent way, we use Eq. (7) to obtain the full K matrix from the known T matrix.
S. Ceci, A. Švarc, B. Zauner, D. M. Manley and S. Capstick, hep-ph/0611094v1
(iii)

Poles of $\operatorname{Tr} K$ are found to obtain a set of resonance masses $M_{1}^{R}, \cdots M_{N_{R}}^{R}$, where N_{R} is the number of resonances.
(iv) Multiplying both sides of Eq. (14) by ($M_{k}^{R}-W$) and setting the energy W to the value of the k th resonance mass $\left(M_{k}^{R}\right)$, the corresponding resonance width is isolated:

$$
\begin{equation*}
\Gamma_{k}^{R}=2 \lim _{W \rightarrow M_{k}^{R}}\left[\left(M_{k}^{R}-W\right) \operatorname{Tr}(K)\right] . \tag{16}
\end{equation*}
$$

All other contributions to the K matrix trace, i.e. background, other resonances, and channel-couplings, are removed in this limiting process (this relation turns out to be similar to Eq.(16) in Ref. [10] for the case of the various πN isospin channels).
(v) The branching ratio of a resonance to a given channel can be obtained in similar manner, but this time using the diagonal K-matrix element, $K_{a a}$ from Eq. (10) and definition (12)

$$
\begin{equation*}
x_{a}^{k}=\frac{2}{\Gamma_{k}^{R}} \lim _{W \rightarrow M_{k}^{H}}\left[\left(M_{k}^{R}-W\right) K_{a a}\right] \tag{17}
\end{equation*}
$$

where, as before, all undesired contributions vanish.
(vi) Steps (iv) and (v) are then repeated for all resonances found in (iii).
Helsinki, June 27 (2007)
Saša Ceci, The 4th International PWA Workshop

T-matrix Poles: Regularization Method

$$
\begin{gathered}
f(z)=(\mu-z) t(z) \\
f(\mu)=\sum_{n=0}^{N} \frac{f^{(n)}(x)}{n!}(\mu-x)^{n}+R_{N}(x, \mu) . \\
f^{(n)}(x)=(\mu-x) t^{(n)}(x)-n t^{(n-1)}(x), \\
|f(\mu)|=\frac{\left|t^{(N)}(x)\right|}{N!}|a+i b-x|^{(N+1)} \\
\frac{(a-x)^{2}+b^{2}}{\sqrt[N+1]{|f(\mu)|^{2}}}=\sqrt[N+1]{\frac{(N!)^{2}}{\left|t^{(N)}(x)\right|^{2}}} .
\end{gathered}
$$

T-matrix Poles: The Recipe II

The dataset was produced by the right-hand side of Eq. (13). $T^{(N)}(x)$ was given by numerical derivation of energy-dependent partial waves obtained in our analysis [6]. A step of 2 McV provided a stable procedure. The Thylor expansion is considered to converge when the extracted parameters mettle down. The higher orders wero used to obtain more accurate valucs of pole parameters. Th acquire reliable fit resulte, we considered data grouped iu a parabolic shape (in accordaune with the necond-order polynomial).

The elastic-pole rexidue is comrnonly given [5] by its absolute value $|r|$ and its phase θ, uaroely

$$
\begin{equation*}
|r|=|f(\mu)| \cdot \tan \theta=\ln f(\mu) / \operatorname{Re} f(\mu) \tag{14}
\end{equation*}
$$

where thin particular (elastic) $f(\mu)$ is given by the first term in Eq. (11) with $T(\pi)$ beiug πN clastic ' 1 'matrix element.

Dole paranctere attained in this why from πN elastic. procew are given in 'lable 1. In order to verify the proceclure, wa applied it to other chanuel procenses. Contrary to anomalous results obtained when using staudard procedurew, inelastic poles varied by only a frw MeV from the rlastic oues.

S. Ceci, J. Stahov, A. Švarc, S. Watson and B. Zauner, hep-ph/060923v1

What is in fact speed plot?

Speed plot

$\left|\mathrm{d} \mathrm{T}_{\mathrm{R}} / \mathrm{dW}\right|=|\mathrm{r}| /\left[(\operatorname{Re} \mu-\mathrm{W})^{2}+(\operatorname{Im} \mu)^{2}\right]$

$$
\frac{(a-x)^{2}+b^{2}}{|f(\mu)|}=\frac{1}{|d t(x) / d x|}
$$

$$
\left|\frac{d t(W)}{d W}\right|=\frac{|f(\mu)|}{(a-W)^{2}+b^{2}}
$$

OK, but who does really care what the speed plot in fact is?

- KH80 pole parameters are obtained by using of the speed plot (the relevant values),
- it is generally considered as a nifty way of finding pole position (NSTAR 2004),
- many PWA groups use it (NSTAR 2007),
- Excited Baryon Analysis Center (EBAC) at JLab in fact wants to study the validity of the speed plot and time delay (this years whitepaper),
- it is considered as a model-independent extraction method,
- many papers utilizing speed plot or time delay are already published, and some might be published as we speak.

Up-to-date resonant parameters definitions

Which came first?

Choice
 of the analysis

$$
\underbrace{\left(\begin{array}{lll}
\boxtimes & \boxtimes & \boxtimes \\
\boxtimes & \boxtimes & \boxtimes \\
\boxtimes & \boxtimes & \boxtimes
\end{array}\right)}_{T}=\underbrace{\left(\begin{array}{ccc}
\begin{array}{|c}
\boxplus
\end{array} & 0 & 0 \\
0 & \boxplus & 0 \\
0 & 0 & \boxplus
\end{array}\right)}_{\sqrt{\operatorname{Im} \Phi}} \cdot \underbrace{\left(\begin{array}{ll}
\boxminus & 日 \\
\boxminus & 日 \\
\boxminus & \boxminus
\end{array}\right)}_{\gamma^{T}} \cdot \underbrace{\left(\begin{array}{ll}
\square & \square \\
\square & \square
\end{array}\right)}_{G} \cdot \underbrace{\left(\begin{array}{lll}
\boxminus & \boxminus & 日 \\
\boxminus & \boxminus & 日
\end{array}\right)}_{\gamma} \cdot \underbrace{\left(\begin{array}{ccc}
\boxplus & 0 & 0 \\
0 & \boxplus & 0 \\
0 & 0 & \boxplus
\end{array}\right)}_{\sqrt{\operatorname{Im} \Phi}},
$$

CMB

－unitary（S）
－analytic
－multiresonance
－coupled channel
experimentally obtained
\boxplus theory－produced functions
日 parameterization by elementary functions
．functions from other sources

K-matrix pole parameters - values

$\begin{aligned} & \mathrm{L}_{2 I 2 J}\left[\begin{array}{l} \left.x_{n N} / x_{n N} / x_{\pi^{2} N}\right] \\ M / \Gamma \end{array}\right. \\ & \text { PDG [1] } \end{aligned}$	$\begin{array}{r} M^{R} \\ (\mathrm{MeV}) \\ \hline \end{array}$	$\begin{array}{r} \Gamma^{R} \\ (\mathrm{MeV}) \end{array}$	$\begin{aligned} & x_{\pi N} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & x_{\eta N} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{array}{r} x_{\pi^{2} N} \\ (\%) \\ \hline \end{array}$
$\mathrm{S}_{11}\left[\begin{array}{l}35-55 / 30-55 / 1-10 \\ 1535 \pm 2 \mathrm{~L} / 150 \pm 50\end{array}\right]$	1543 1553	165 182	39 46	$\begin{aligned} & \mathbf{5 4} \\ & 50 \end{aligned}$	7 4
$\mathrm{S}_{11}\left[\begin{array}{l}\text { 55-90/3-10/10-20 } \\ 1650 \pm \pm_{10}^{30} 150 \pm 50\end{array}\right]$	$\begin{gathered} \mathbf{1 6 8 0} \\ 1652 \end{gathered}$	233 202	$\begin{aligned} & \mathbf{6 4} \\ & 79 \end{aligned}$	$\begin{aligned} & \mathbf{1 6} \\ & 13 \end{aligned}$	20
$\mathrm{S}_{11}\left[\begin{array}{l}\mathrm{NPV} \\ \sim 2090 / \mathrm{NPV}\end{array}\right]$	$\begin{array}{r} 2054 \\ 1812 \end{array}$	$\begin{array}{r} 1926 \\ 405 \end{array}$	$\begin{aligned} & 47 \\ & 32 \end{aligned}$	$\begin{array}{r} 3 \\ 22 \end{array}$	$\begin{aligned} & 50 \\ & 46 \end{aligned}$
	$\begin{array}{r} 1482 \\ 1439 \end{array}$	541 437	61 62	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	39 38
$\mathrm{P}_{11}\left[\begin{array}{l}10-20 / 6 / 40-90 \\ 1710 \pm 30 / 100 \pm 50\end{array}\right]$	$\begin{array}{r} 1738 \\ 1740 \end{array}$	170 140	44 28	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	44 60
$\mathrm{P}_{11}\left[\begin{array}{l}\mathrm{NPV} \\ \approx 2100 / \mathrm{NPV}\end{array}\right]$	$\begin{array}{r} 2123 \\ 2157 \end{array}$	379 355	3 16	$\begin{aligned} & 83 \\ & 83 \end{aligned}$	14
$\mathrm{P}_{13}\left[\begin{array}{l}10-20 / 0 />70 \\ 1720 \pm 30 / 100 \pm 50\end{array}\right]$	$\begin{array}{r} 1776 \\ 1720 \end{array}$	$\begin{gathered} 409 \\ 244 \end{gathered}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 82 \end{aligned}$

It seems like there is some relation between BW and Kmatrix pole parameters?

$\mathrm{D}_{13}\left[\begin{array}{c}50-60 / 0 / 40-50 \\ 1520 \pm 5_{5}^{10} / 20 \pm 15\end{array}\right]$	$\begin{gathered} \mathbf{1 5 1 5} \\ 1522 \end{gathered}$	$\begin{array}{r} \mathbf{1 2 1} \\ 132 \end{array}$	$\begin{aligned} & 56 \\ & 55 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 44 \\ & 45 \end{aligned}$
$\mathrm{D}_{13}\left[\begin{array}{l}50-60 / 0 / 40-50 \\ 1700 \pm 50 / 100 \pm 50\end{array}\right]$	$\begin{array}{r} 1818 \\ 1817 \end{array}$	$\begin{aligned} & 126 \\ & 134 \end{aligned}$	15 9	$\begin{aligned} & \mathbf{1 5} \\ & 14 \end{aligned}$	70 77
$\mathrm{D}_{13}\left[\begin{array}{l}\mathrm{NPV} \\ \sim 2080 / \mathrm{NPV}\end{array}\right]$	$\begin{array}{r} 2359 \\ 2048 \end{array}$	$\begin{array}{r} \mathbf{1 2 1 6} \\ 529 \end{array}$	26 17	6 8	68 75
$\mathrm{D}_{15}\left[\begin{array}{l}40-50 / 0 / 50-60 \\ 1675 \pm{ }_{5}^{1 /} / 150 \pm 10\end{array}\right]$	$\begin{gathered} \mathbf{1 6 7 4} \\ 1679 \end{gathered}$	$\begin{gathered} \mathbf{1 4 4} \\ 152 \end{gathered}$	36 35	0 0	64 65
$\mathrm{F}_{15}\left[\begin{array}{l}60-70 / 0 / 30-40 \\ 1680 \pm \pm 50 / 130 \pm 10\end{array}\right]$	1682 1680	$\begin{gathered} \mathbf{1 4 4} \\ 142 \end{gathered}$	67 67	1 0	32 33
$\mathrm{F}_{17}\left[\begin{array}{l}\text { NPV } \\ \underset{\sim}{\mathrm{NP}} 190 / \mathrm{NPV}\end{array}\right]$	$\begin{array}{r} 2139 \\ 2262 \end{array}$	$\begin{array}{r} 412 \\ 2036 \end{array}$	7 3	3 2	90 95
$\mathrm{G}_{17}\left[\begin{array}{l}10-20 / \mathrm{NPV} \\ 2190 \pm 10 / 450 \pm 100\end{array}\right]$	$\begin{array}{r}1806 \\ \hline\end{array}$	286 -	6	0	94 -
$\mathrm{G}_{17}\left[\begin{array}{l}-/-/- \\ -/-\end{array}\right]$	$\begin{array}{r} 2397 \\ 2125 \\ \hline \end{array}$	$\begin{array}{r} 1217 \\ 381 \end{array}$	16 18	0 0	$\begin{array}{r}84 \\ 82 \\ \hline\end{array}$

correlation - K-poles and T-trace

Interesting is that strong discrepancies

occur at the same places as in the case of the K-matrix poles.

Some results of this research

Physics:

- two extraction methods are developed (regularization method i trace method),
- correlation between pole positions of K matrix and trace of matrix T is quite strong (but also unexpected),
- stronger departures from this correlation indicated (practically always) to known issues of the original analysis,
- we expect that this could be improved by addition of a few additional important inelastic channels,
- projector matrices χ most likely do not have resonant poles.

Mathematics:

- a method is developed that determines simple poles or zeros of complex functions (verified on various independent cases),
- projector matrices χ are introduced as a basis for expansion of the normal matrices.

Influence to standard approaches:

- origin and misinterpretations are given of the speed plot method (similarly for the time delay),
- critics is drawn on the model-dependent methods (like various BW parameterizations and hybrid approaches)
- most methods are developed for narrow resonances - in baryon physics they are simply not narrow enough.

