Striking structures in $pp \rightarrow (pp)_{S-wave} \pi^0$

Jouni Niskanen University of Helsinki

June 29, 2007

- Peak structures in $pp \to (pp)_{S-wave\pi^0}$
- Charge dependence in $NN \rightarrow d\pi$? (with H. Machner)

$$NN
ightarrow (NN)_{S- ext{wave}} \pi$$

 $pp \rightarrow (pp)_{S-\text{wave}} \pi^0$ has presented some surprises:

- Close to threshold cross section unexpectedly high (H.O. Meyer et al., NPA 539, 633).
- Was not explained by $\Delta(1232)$ (Niskanen PLB 289, 227).
- Still much suppressed as compared with $pp \rightarrow (pp)_{triplet} \pi^+$.
- For final ${}^{1}S_{0}l_{\pi}$ only "tensor coupled" initial states ${}^{3}P_{0}$, ${}^{3}P_{2}$, ${}^{3}F_{2}$, ... (and l_{π} even) possible \Rightarrow some mechanisms suppressed
- New mechanisms suggested (T.S.H. Lee and D.-O. Riska, PRL 70,2237 and E. Hernandez and E. Oset, PLB 350, 158).

More recently even above threshold constraint of final state nucleons to relative S wave possible (with low-energy cut for nucleons):

R. Bilger et al., NPA 693, 633 threshold to 400 MeV, Celsius

S. Dymov et al., PLB 635, 270 at 800 MeV, COSY

Model includes "direct" production from (distorted) nucleons, s-wave pion rescattering, p-wave pion rescattering through $\Delta(1232)$ by $N\Delta$ coupled channels and "heavy meson exchange".

Mechanisms for pion production

Predictions of total cross section of $pp \rightarrow (pp)_{S-wave} \pi^0$ in partial waves

Model results vs. some Celsius data. Cut of 3 MeV on final pp energy.

Model results vs. ANKE data at 800 MeV.

Strongly destructive interference in forward direction \Rightarrow extreme sensitivity to amplitudes.

Intermediate energy range totally uncharted. Partial wave contributions show significant structure as functions of energy - reflection of the $\Delta.$

Structures appear strikingly even more in forward cross its section and Sensitivity slope. interferences of to the Δ and nucleon background.

Nucleon background "smooth" (dashed). Above 550 MeV purely nucleonic slope of wrong sign. Total cross section of $pp \to (pn)_{{}^{3}S_{1}-{}^{3}D_{1}-\text{wave}}\pi^{+}$

Summary on $pp ightarrow (pp)_{S- ext{wave}}$

With small cut on final NN energy can look at few matrix elements as functions of pion momentum, i.e. of momentum transfer, **essentially at single momentum**.

Very delicate interference effects seem to give unexpectedly strong sensitivity to the Δ component.

Without cut in momentum-integrated cross section sensitivity smeared off.

Striking energy and angular dependencies. Probably spin observables offer some excitement, too.

 $pn\pi^+$ final state study just beginning.

Charge dependence in $NN \rightarrow d\pi$?

Charge independence (CI) of nuclear forces:

strong nuclear forces same for pp, nn, np and pn in same spin-spatial states i.e. invariant in arbitrary rotations of the isospin space

Special case: charge symmetry (CS) $n \leftrightarrow p$ mirror isospin $T_z \rightarrow -T_z$

Broken: changes in e.g. nuclei minor but for us differences have profound consequences.

If symmetry exact, then in terms of isospin eigenstates

$$\begin{aligned} \frac{d\sigma(pp \to \pi^+ d)}{d\sigma(np \to \pi^0 d)} &= \frac{|\langle 1, 1|S|1, 1\rangle|^2}{|1/\sqrt{2} \langle 1, 0|S|1, 0\rangle + 1/\sqrt{2} \langle 1, 0|S|0, 0\rangle|^2} \\ \text{with} \quad \langle 1, 0|S|0, 0\rangle = 0 \qquad (\text{CS, isospin conservation}) \\ \text{and} \quad \langle 1, 1|S|1, 1\rangle = \langle 1, 0|S|1, 0\rangle \quad (\text{CI}). \end{aligned}$$

Therefore

$$rac{d\sigma(pp o\pi^+ d)}{d\sigma(np o\pi^0 d)}=2\,,$$

much used proportionality to relate these reactions.

Symmetry in interactions broken at least by

- electromagnetic interactions (CIB and CSB)
- neutron-proton mass difference (CSB, CIB)
- meson mass differences (CIB)
- meson mixing $(\eta\pi^0,\
 ho^0\omega)$ (CSB, CIB)
- basic origin up- and down-quark mass difference and EM interactions of quarks

Cause both CIB and CSB nuclear interactions

CIB nuclear interactions

In low energy NN scattering well known

 $|a_{np}(\text{singlet})| > |a_{nn}(\text{singlet})|, \qquad \approx 23 \text{ vs. } 17 \text{ fm}$

i.e. np interaction more attractive. Origin mainly π^{\pm} and π^{0} mass difference \Rightarrow isotensor force. Class II $\propto 3\tau_{10}\tau_{20} - \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}$ in classification of Henley& Miller. Nonzero only for T = 1.

CSB seen also in meson production $np \rightarrow d\pi^0$ (Opper et al. PRL 91, 212302) and in $dd \rightarrow \alpha \pi^0$ (Stephenson et al., PRL 91, 142302)

CIB in meson production largely unexplored.

Kinematic considerations

Different masses \Rightarrow different thresholds $\Rightarrow E$ vs. q_{π} different.

Ranges of *s* and *t* $t_0 = t_+ + 0.01065 \text{ GeV}^2$

Theoretical study without CIB interactions

CIB in $pp \rightarrow d\pi^+$ vs. $np \rightarrow d\pi^0$ was studied including only effects of different thresholds (kinematics) and Coulomb (Niskanen and Vestama, PLB **394**, 253). Separation of phase space and dynamical matrix elements

Also Coulomb removed by extended source penetration factors.

Coulomb penetration factors for p wave and for extended source vs. point-like charge *s*-wave factor.

Differences between reduced (phase space and Coulomb corrected) cross sections seen at several % level (even close to 10%), albeit model dependent (weakly). Can that be seen in existing data?

Problems:

- Neutron beams inferior to proton beams
- Normalization of neutron beams (viceous circle)
- No precise differential cross section data for np and pp at same energy (what is "same" energy?).

Solution(?):

- Globalism
- Relative observables (energy and angular dependence)

Global fits

Total (reduced) cross section of $pp \rightarrow d\pi^+$ can be well fitted with function

$$R_{pp} = \left[rac{b_1 b_3^2}{(b_2 - \eta)^2 + b_3^2}
ight]^2$$

with $\frac{b_1 \,(\text{fm}^3 \text{MeV})}{1252.347 \pm 11.232} \frac{b_2}{1.2503 \pm 0.0064} \frac{b_3}{0.7922 \pm 0.0108}$

Even though analytic structure not correct (not function of η^2 but η), may be useful as easy-to-use parameterization.

Fit to raw $pp \rightarrow d\pi^+$ total cross sections

Fit to reduced (phase space and Coulomb removed) cross sections One motivation: aim to "model independent" prediction based on different thresholds by

$$\delta R \equiv R_{np} - R_{pp} = \frac{\mathrm{d}R_{pp}}{\mathrm{d}E_i} \left(E_i(np) - E_i(pp) \right).$$

Expect: Due to larger threshold for pp expect np to "lag behind" especially in climbing the Δ hill (*i.e.* negative δR).

Is **not** enough except to some extent in Δ peak slope.

Physical meaning: *If* one could have varying initial nucleon energy with constant final momentum, then matrix elements **would decrease** with that energy close to threshold – model dependent behaviour.

Model vs. "model independent" predictions. Probably cannot avoid model dependence.

Threshold energy dependence

Rather high quality data on $np \rightarrow d\pi^0$ in threshold region exist from TRIUMF. Can be fitted by low energy expansion

 $R = lpha_0(1+lpha_1\eta^2)$ economic choice.

Fitted energy dependencies different: *pp* much steeper.

Relative difference from model (dots) and fits with also npcross section renormalized by factors 0.9 and 1.1.

Cannot reconciliate fit and charge independent model.

Angular distributions

Can be fitted by

$$egin{array}{rl} 4\pi rac{d\sigma(\eta,\cos heta)}{d\Omega} &=& A_0(\eta)P_0(\cos heta)+A_2(\eta)P_2(\cos heta) \ &=& \sigma(\eta)\left[1+a(\eta)P_2\left(\cos heta
ight)
ight] \end{array}$$

(with higher polynomials at higher energies). Measure of anisotropy $a(\eta) = A_2(\eta)/A_0(\eta)$ independent of normalization and fitted as function of η .

Quality of np anisotropy $a(\eta)$ and fit.

Confidence intervals (on 95% level) of the fitted np and pp anisotropies

Summary on Charge Dependence Study

CIB searched trying to compare $pp \rightarrow d\pi^+$ and $np \rightarrow d\pi^0$.

Neutron beam normalization problem \Rightarrow relative quantities useful, fits like $obs \sim \sigma_{tot}(1 + a * rel.q)$.

Possible deviation from expectations without CIB forces in energy dependence of total cross section.

More (and better) experiments with neutrons needed.

Another avenue: more complicated $pd \rightarrow {}^{3}\text{He}\pi^{0}$ vs. $pd \rightarrow {}^{3}\text{H}\pi^{+}$ avoids initial state normalization.