Detectors, DAQ and slow control issues at the SuperFRS

H.Simon

AIMS: detector system used for

- initial beam steering → ACS/FESA
 → simple, reliable, slow control interface
- 2. machine safety → ACS/FESA
 → slow control interface, interlocks
- 3. part of the experiments
 → interface to DAQ system
- → MBS/DABC/EPICS

Continous beam ID is integral part of experiments

Example: ¹³²Sn PDR studies

Bρ-Δ**E**-**TOF** method: **Requirements**

$$B\rho = A/Z \cdot \beta \cdot \gamma \implies A/Z, P$$
$$TOF = L/\beta \implies Z$$
$$\Delta E \sim Z^2/\beta^2 \implies Z$$

Pos res. $\sigma \leq 1 \text{ mm}$ Timing res. σ : 50 ps ΔE resolution σ : 1-2 %

O CHARGE STA

- Position: Wirechambers (single event readout)/Diamond
- ΔE : MUSIC/TEGIC
- TOF: Plastic/Diamond

Standard detectors at the FRS

- Beam diagnostics : Current Grid (CG)
- Intensity : Secondary Electron Emission Transmission Monitor (SEETRAM)
- x,y : Multi Wire Proportional Chamber (MWPC) ∆E : Multi Sampling Ionization Chamber (MUSIC) Tof : Scintillators

Detector Scheme for Super-FRS target area

available/possible systems

Fast extraction	Intensity	Slow extraction
Resonance Transformer		Cryogenic Current Comparator
Diamond (single crystal, current readout)		SEETRAM Diamond (poly crystal & particle)
	Position	
Pickups		
	Profile	
Beam induced fluorescence(BIF)		BIF
Current Grids		Current Grids/Wire chambers
	Monitoring	
Camera on target (IR)		Camera on target (IR)
full intensity	reduced intens	ity (< about 1 nA)

Cryogenic Current Comparator

W. Vodel, R. Neubert, S. Nietzsche, R. Nawrodt, K. Knaack, K. Wittenburg A. Peters

- About 100 k€/ system •
- > 1nA, pulse to DC ۲

R&D: Radiation Hardness/Shielding of SQUID

Helsinki - Preparation EoI - Oct 6th 2008

The design of the CCC is realized as

pick-up

coil

Beam Induced Fluorescence

P. Forck / GSI

- about 100 k€/ system
- Optical imaging of a N₂-filled test volume (MCP + camera)

200 μ s Ar¹¹⁺ beam of $I = 700 \ \mu$ A with 6 MeV/u

Throughout the separator: Diamond Detectors

- current readout for single crystal (a few mm²)
- cheaper polycrystaline diamonds (a few cm²)
- very good homogenity and radiation hardness
- price from a few 100 €/cm² to 1000 €/cm²
- expertise inhouse

²⁷AI, 2 AGeV

PC-DG1 vers.

PC-DG2 σ_{tD1}= σ_{tD2}= 28 ps

6000

4000

2000

Counts

Bookkeeping (i)

2.4. 6 Diagnostics

Fluorescent Screen				
Number of elements		1		
Overall length	mm	50		
Horizontal aperture	mm	100		
Vertical aperture	mm	100		

CVD-DD (diamond detectors, calibration)				
Number of elements		1		
Overall length	mm	100		
Horizontal aperture	mm	100		
Vertical aperture	mm	100		
Rate	Hz	$1 - 500 \cdot 10^6$		

Luminosity Monitor (SEETRAM)				
Number of elements		2		
Overall length	mm	200		
Horizontal aperture	mm	100		
Vertical aperture	mm	100		
Intensity range	particles/spill	$< 10^{11}$		

Bookkeeping (ii)

Position Monitor (CG)				
Number of elements		32		
Overall length	mm	300		
Horizontal aperture	mm	400		
Vertical aperture	mm	250		
Intensity range (energy deposition)	mW/mm	<100		

Tracking Detector (MW)				
Number of elements		32		
Overall length	mm	300		
Horizontal aperture	mm	400		
Vertical aperture	mm	250		
Rate	kHz	<100		

Capacitive Pick-up		
Number of elements		2
Overall length	mm	300
Horizontal aperture	mm	150
Vertical aperture	mm	150
Intensity range	particles/spill	$<10^{9}$

MUSIC Detectors				
Number of elements		4		
Overall length	mm	500		
Horizontal aperture	mm	400		
Vertical aperture	mm	80		
Rate	kHz	200 1000		

ToF (diamond detectors, PC-CVD-DD)					
Number of elements		4			
Overall length	mm	200			
Horizontal aperture	mm	400			
Vertical aperture	mm	50			
Pitch	mm	1			
Time resolution	ps	<50			

R³B diamond detector layout: → MF2 SuperFRS: × 8(h)

Test exp. 04/08R. Gernhäuser (TU-München)

babababa

G S 1

tracking layer:

- 50 x 50 mm, d = 100 µm, PC-CVDD
- 140 μm pitch (125μm strips, 15 μm gap)
- only digital position information
- multiplexed readout in vacuum

timing layer:

- 50 x 50 mm, d = 100 µm, PC-CVDD
- 8 rate matched strips, y information, trigger
- analog preamplification in vacuum
- discriminator @ 5 m distance

Time Projection Chamber

- CUB Bratislava
- (240x100) mm² active area
- Gas P10 at 1 atm
- Integrated delay lines (2x-pos, 4y-pos)

tpc_y[1]:tpc_x[1] {b_tpcxy[1]}

x, y calibrations

⁴⁰E

30^E

20

8143

21.79 6.704 Beam Profile Detector - CUB Bratislava for intense fast extracted and slow extracted beams

- Basic module (120x120) mm²
- 5mbar < gas Ar+(10%)CO₂ < 1bar</p>
- Wires 2mm pitch directly connected to delay lines

Beam profile

¹²C@200-400 MeV/u
 10⁴- 1.6 · 10⁹ ions/spill
 Spill length: 300 ns
 FADC SIS3301(100MHz)

Helsinki - Preparation EoI - Oct 6th 2008 A. Procházka, C. Nochoro

Missing items:

FRS MUSIC

- Fast ∆E counter 100 kHz – 1MHz, res. 1-2%, <u>large</u> dynamic range (no MIPS Z → ~100)
 - TEGIC (RIKEN, ca 1MHz)
 - Silicon stacks ?
 - sc-CVDD ?
- Fast Tracking detectors large dynamic range
 - PC-CVDD with continous readout
 - ?
- Fast TOF (currently SCI, ca. 10MHz) large dynamic range
 - PC CVDD
 - ?

Helsinki - Preparation EoI - Oct 6th 2008

anoue 3	uipa	
CF4	Frisch grid	float glass window
	cathode	hy
Geometry active area: active length: anode: total gas length: entrance windows: distance anode – grid: grid wire diameter: grid wire spacing:	200 mm \times 80 mm 400 mm 8 anode strips with 50 mm active length each 420 mm float glass D263 (DESAG), thickness 210 μ m 7 mm 100 μ m 1 mm	

Gas supply

beam

High voltage supply

anode strips

~200 kHZ

voltage divide

Missing items:

- Fast ∆E counter 100 kHz – 1MHz, res. 1-2%, <u>large</u> dynamic range (no MIPS Z → ~100)
 - TEGIC (RIKEN, ca 1MHz)
 - Silicon stacks ?
 - sc-CVDD ?
- Fast Tracking detectors large dynamic range
 - PC-CVDD with continous readout

- ?

- Fast TOF (currently SCI, ca. 10MHz) large dynamic range
 - PC CVDD

G S I

K. Kimura et al., Nucl. Instr. and Meth. A538(2005)608

P10 425mm normal pressure Electrodes(anode/cathode) 4µm×25 Mylar 14 mg/cm² Distance(anode-cathode) 2cm Detector Window 150µm Kapton

 $\sim 1 \text{ MHZ}$

Readout using MBS

- Basic system (http://daq.gsi.de)
 - Trigger module + VME processor
 Modules (CAMAC, VME)
- Integrates foreign DAQ Systems (via Time Stamps)
- various FEE integrated

via GTB/SAM (Bus / DSP&FPGA VME board)

lightweight, scalable, N x M, full VME speed allows for staged transition !!! SuperFRS, R³B, PRESPEC(High/Despec)

APV Frontend (triggered) - M. Böhmer, TUM

• APV25-S1 RAL → CMS (Si, ...)

(128 channel analogue pipeline
192 columns analogue storage.
50 ns shaped pulses
100mV / 25,000 electrons
40MHz sample
Useful data marked
test pulser, pos/neg, ...)

- I²C control
- Clck, Trg
- Low power consumption
- Readout to MBS (ADC/FPGA/DSP)

Extended Time distribution (BuTiS) P.Moritz/GSI

- Campus wide time distribution via fibre optics
- Synchronized local oscillators (100kHz, 10Mhz, and e.g. 200, 155 or 76 Mhz) with +/-100ps/km absolute uncertainty and << 10ps oscillator jitter

		14/4/2				
gered mote itatus	BPSK on BPSK on Heater Ref ext.	09/11 Menue: REFERENCE SOUR	BuTiS CE	Configura Value:	tion EXTERN	
TIS Refer lered () note () latus ()	ence Generato BPSK on Heater Ref ext.	ø6∕11 Menue: <u>P</u> TRIGGER START	BuTiS TIME	Confi9urat Value:	ion 9999	
					(

Token Ring Scheme (NXYTER)

• "deadtime free"

Ch. Schmidt (GSI)

berg Sparse & derandomized readout

- Periodic readout at 20MHz
- Token asynchronously passes from channel to channel in search of data
- Within one readout cycle token could pass through all channels
- If token encounters occupied channels, data readout is initiated.
- After readout the token passes to the next channel.

→20 MHz/128 Ch ≈ 160 kHz ENOB 10.4

Variety of applications: Test with single wire readout foreseen !

Physikalisches Institut der Universität Heidelberg

First Results: Baseline

Results: Position

Online reconstruction of positions:

- i. @ full rate (i.e. 50+ kHz, theoretical limit: ADC speed !)
- ii. no correction yet
- \rightarrow development of a "slow process"

minimal distortions

Collaborators

- CU Bratislava
- TU Munich
- JSI Ljubljana
- KVI Groningen

- B. Sitar et al. (MWs)
- R. Gernhäuser et al. (Diamond)
- M. Vencelj et al. (PSA)
- H. Wörtche et al. (FE-Controls)

GSI

G S T

- Detector Laboratory Ch. Schmidt et al.
- Experimental Electronics E. Badura et al.
- Accelerator Group R. Bär, P. Forck, et al.

EoI: Helsinki University (Rad-hard Si/GEM)

ID Detectors at the Super-FRS

beam optics \rightarrow

size (400x60) mm² position resolution ~ 1mm

Fluorescent Screen			
Number of elements		1	
Overall length	mm	50	
Horizontal aperture	mm	100	
Vertical aperture	mm	100	

CVD-DD (diamond detectors, calibration)		
Number of elemsents		1
Overall length	mm	100
Horizontal aperture	mm	100
Vertical aperture	mm	100
Rate	Hz	1 – 500·10 ⁶

Specs ff

Luminosity Monitor (SEETRAM)		
Number of elements		2
Overall length	mm	200
Horizontal aperture	mm	100
Vertical aperture	mm	100
Intensity range	particles/spill	<1011

Position Monitor (CG)		
Number of elements		32
Overall length	mm	300
Horizontal aperture	mm	400
Vertical aperture	mm	250
Intensity range (energy deposition)	mW/mm	<100

Specs ff

Tracking Detector (MW)		
Number of elements		32
Overall length	mm	300
Horizontal aperture	mm	400
Vertical aperture	mm	250
Rate	kHz	<100

Capacitive Pick-up		
Number of elements		2
Overall length	mm	300
Horizontal aperture	mm	150
Vertical aperture	mm	150
Intensity range	particles/spill	<10 ⁹

Specs ff.

MUSIC Detectors		
Number of elements		4
Overall length	mm	500
Horizontal aperture	mm	400
Vertical aperture	mm	80
Rate	kHz	200 1000

ToF (diamond detectors, PC-CVD-DD)		
Number of elements		4
Overall length	mm	200
Horizontal aperture	mm	400
Vertical aperture	mm	50
Pitch	mm	1
Time resolution	ps	<50

Staged implementation

R&D high current admissible for some years!

Segmented CVDD detectors RD42 collaboration

Pixel readout by Si₃N₄ - isolated micro tracks.

Pixels(110 x 290) μm²(400 x 400) μm²Tracks15 μm / pitch 30 μm

CVDD micro strip 50 µm

APV-25 CERN/CMS ASIC shaping time: 25 ns analogue daisy chains 128 channels per chip

Diamond detector test

Radiation Hardness: some samples show persistent photo current (PPC) after irradiation limit ¹⁶O@112MeV 10¹³ cm⁻²

Efficiency: 98% for ¹⁶O@120MeV

Signal Properties: new frontend electronics based on the APV25 chip (CMS tracker chip) produced and in use

Helsinki - Preparation EoI - Oct 6th 2008 Gernhäuser (TU-Müncher

Check readout scheme, crosstalk, range Different readout on both sides

PC CVDD (10x10) mm²

Fast pre-amplifiers

GSİ

New low power pre-amplifier from HADES Start detector

 New pre-amplifiers for HISPEC/DESPEC –LYCCA designed by R. Schneider (Mesytec)

Diamond Detector for R³B

Tested with ¹²C beam

R. Gernhäuser (TU-München) et al.

Gsi

Helsinki - Preparation Eur - UCI ULI 2000

- 2.54x2.54 cm²
- 200 μm pitch, 20 μm gap
- Back side divided in 16 Al strips each with a gap of 50 μm
- excessive cost

¹²⁹Xe @600 MeV/u, 10⁵ pps

Diamond Detector test

Tested at CNA-Seville

SC CVDD p, α , ⁷Li low energy beams

- Energy resolution ~1% (similar to Si)
- $\Delta t < 100 \text{ps}$
- Estimated efficiency > 70%
- Samples irradiated up to 10⁹ ions/s cm²

SC CVDD , 110-500 µm (GSI Detector Laboratory)

Diamond detector test

Radiation Hardness: some samples show persistent photo current (PPC) after irradiation limit ¹⁶O@112MeV 10¹³ cm⁻²

Efficiency: 98% for ¹⁶O@120MeV

Signal Properties: new frontend electronics based on the APV25 chip (CMS tracker chip) produced and in use

R. Gernhäuser (TU-München) et al.

Check readout scheme, crosstalk, range Different readout on both sides

Test detector for slow down beams

GSI group:

P. Boutachkov, M.Górska, J.Gerl, H.Geissel, W.Koenig I.Kojouharov, C.Nociforo, W.Prokopowicz, H.Schaffner, H.Weick <u>LNL group</u>: J.J.Valiente, A.Gadea

<u>JINR Dubna</u>: N.Kondratiev

Development with MCP, MICROMEGAS technology

<u>Saclay</u>: A.Drouart, A.Polacco

<u>Koln</u>: J.Jolie, F.Naqvi, **Pasco**

Large Area Secondary Electron Detection

1.5x1.0x1.0 m³

Sevilla group: J.Gomez Camacho, M.Alvarez, J.M.Espino, I.Mukha, J.M.Quesada Helsinki - Preparation EoI - Oct 6th 2008

Prologue: Extended experimental Setup at Cave C

Idea: Use ADC coupled to Hades TRB2 of KVI: Peter Schakel / Pim Lubberdink

- Available hard/software environment:
 - (1) ADC Piggy back / KVI 100MS/14Bit 50MHZ BW
 - (2) Xilinx based board HADES TRB2
 - (3) Base line follower/
 - $k\sigma$ trigger
 - (J. Jungmann / M. Vencelj)

Labview based readout system

Results: Baseline

Results: Amplitude $\rightarrow \Delta E$

Results: Position

Online reconstruction of positions:

- i. @ full rate (i.e. 50+ kHz, theoretical limit: ADC speed !)
- ii. no correction yet
- \rightarrow development of a "slow process"

minimal distortions

Tacquila

• triggered system

For our application:

- PM signals (LAND, TOF-wall, ...)
- + slow control + monitoring → dedicated front end card

- Super-FRS: (400x60)mm², pitch 1mm, thickness <0.2mm, ΔTof<100ps, rate 10⁸ pps
- R³B: (20x20) mm², pitch 0.5mm, thickness <0.1mm, Δ Tof<50ps, rate 10⁶ pps
- HISPEC/DESPEC- LYCCA: (60x60) mm², thickness <0.2mm, Δ Tof<50ps, rate 10⁶ pps

BuTiS fibre distribution test bench

0.01, 10, e.g. 200 MHz copper → (local TDS) ?

٩R

Diamond Detectors

ΔΕ ...

M. Pomorski, E. Berdermann et al. Nordhia, RD42

• R&D: usage as dE detector, FE electronics ! Helsinki - Preparation EoI - Oct 6th 2008

SAM Readout → VME

FEE "standard module" Tacquila

Tac chips ASIC: FHG Dresden Concept: GSI

- 1241 chips are availble @GSI (9 €/chip)
- 40,000 could be produced from existing wavers and bought (price to be negotiated, one shot)
 - new company for packaging
 - testing about 0.5 €/chip
 - 2800 chips/wafer 2000 €/wafer

BuTiS at work (20071015)

- T/div 10 ns 200 samples at 2 65/o
- (500 ps/pt) TO pulse for sync.
 - very good phase stability
 - BuTiS oscillator
 - can run standalone
 - about 10k€/system

F(AIR

NUSTAR DAQ organisation

SAM Readout → VME → MBS (readout trigger)

Tracking detectors in front of and

behind the target (x, y, θ , ϕ)

- Start detector (t_{start})
- Focal plane detector (x, y, $\theta,$ t_{stop} , $\Delta E,$ $E_{res})$

 $\Delta \theta$, $\Delta \phi \sim 2 mr$

 $\Delta Tof \sim 150 \text{ ps}$

¹³²⁻ⁿSn knocked out fragments

Monitoring integrated electronics (example: Vulom Trigger Electr.)

Logic Module (FPGA) Master Thesis: Softscope Univ of Applied Science Coburg

→GTKwave output
→programming
via DAQ channel

Test: Summer student P. Lubberdink (KVI)

M.Fuhrmann, H.Simon

Time	0	16380 m	32.760 ms	4915	0 ma	an Uit chie
nlon.Source1_7-4[3:0]=50	20					
.lon.Sourcel_B-8[3:0]=50	50					
nlom.Source1_F-C[3:0]=50	20					
nlom.Source1_3-0[3]=0						
nlon.Source1_3-0[2]=0						
nlon.Sourcel_3-0[1]=1						
nlom.Source1_3-0[0]=0	mmmmm	nnnnnnn	งการการการการการการการการการการการการการก	mmmmmm	mmmmmm	

Digital Signal Processing

H. Wörtche et al. (KVI)

ENERGY

- oversampling 2GS, intelligent averaging
 - comparable
 resolution to
 conventional
 spectroscopy
 setup ...

ASIC: System Design fast timing

G. May, H.Simon (GSI)

Example: Current LAND electronics ~ 600 ch

G. May, K. Koch, H.Simon (GSI)

= 30 Tacquila cards with

New design

LAND FEE + 2 VME helper modules + 1 VME CPU + 10 VME QDCs + 3 HV bins

Boils down to $1 + \epsilon$ crates !

Slicon Strip DEtector REadout Module (SIDEREM)

J. Hofmann, W. Ott, N.Kurz (GSI)

