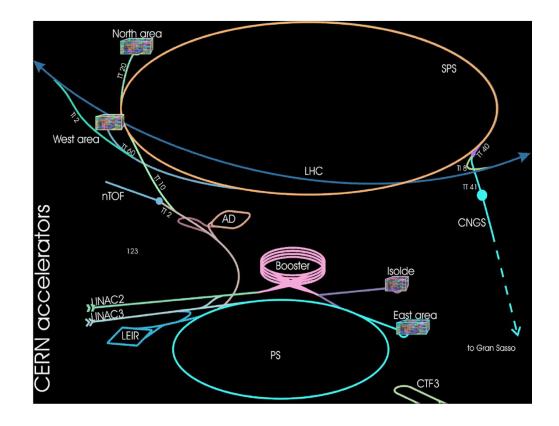
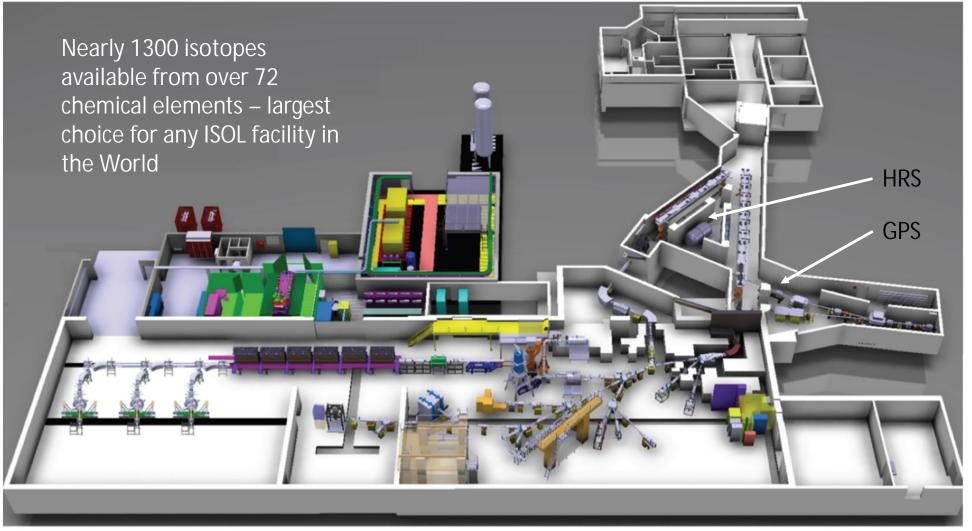
Other experimental activities at CERN

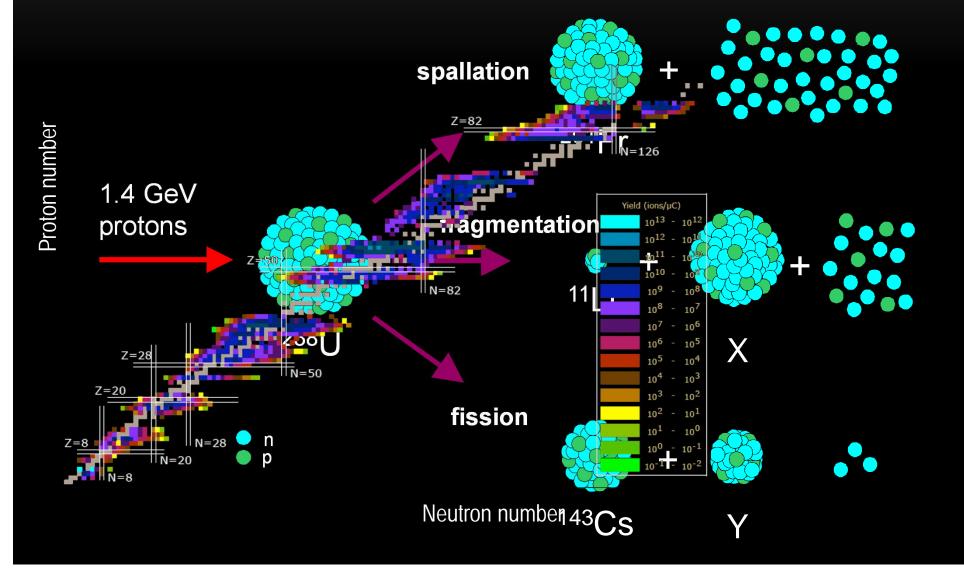
World leading ISOL-type facility for basic and applied research with radioactive isotopes Dr. Janne Pakarinen, JY


State-of-the-art instrumentation to simulate every step of the particle formation processes in the laboratory Prof. Markku Kulmala, HY

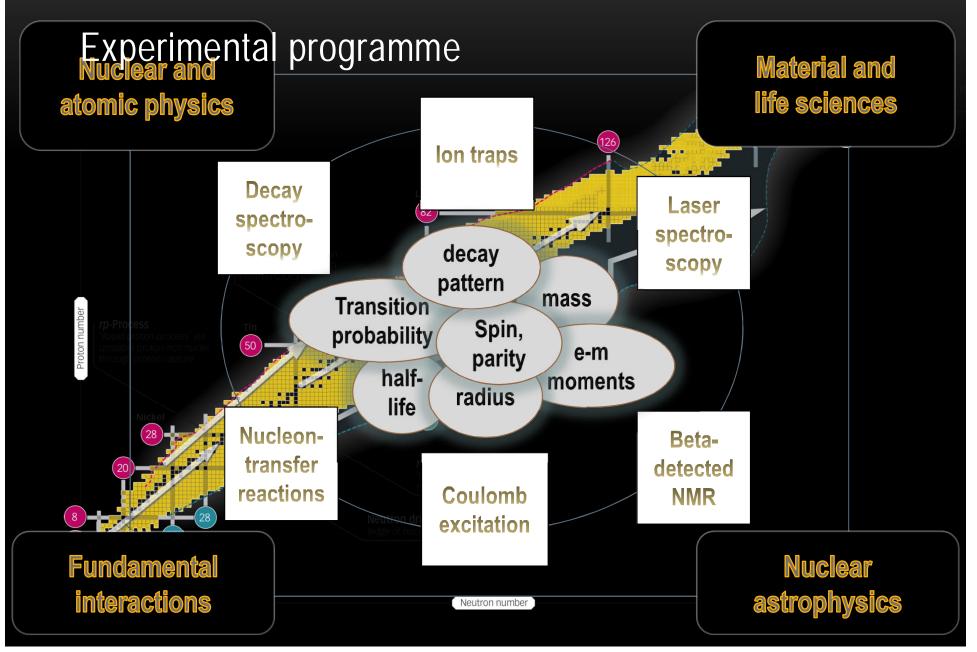
Other experimental activities at CERN

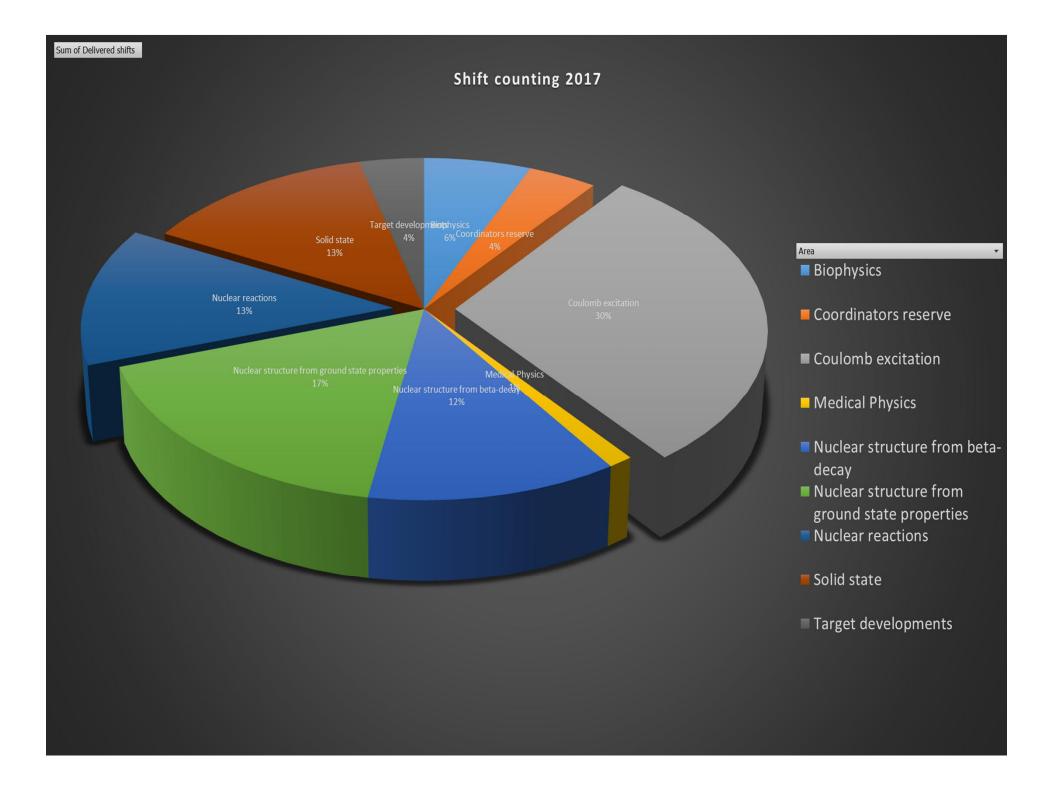

ISOLDE at PS-booster

CLOUD using beam from Proton Synchrotron


ISOLDE at CERN

Janne Pakarinen, JY





Isotope production at ISOLDE

Techniques: all available at ISOLDE

Finnish participation

- Janne Pakarinen (UJ)
 - HIP-ISOLDE project leader, ISCC representative, SISIN project leader, IDS and MINIBALL steering committee member, ISS collaboration member
- Prof. lain Moore (UJ)
 - INTC member

Other HIP affiliated active members

- P. Greenlees, prof., adj. senior scientist (UJ)
- A. Jokinen, prof., adj. senior scientist (UJ)
- W. Gins adj. senior scientist (UJ)
- T. Grahn, adj. senior scientist (UJ)
- R. de Groote, adj. scientist (UJ)
- A. Illana-Sison, adj. scientist (UJ)
- M. Reponen, adj. scientist (UJ)
- P. Rahkila, adj. scientist (UJ)
- P. Ruotsalainen, adj. scientist (UJ)
- J. Ojala, adj. grad. Student (UJ)
- K. Helariutta, adj. senior scientist (UH)

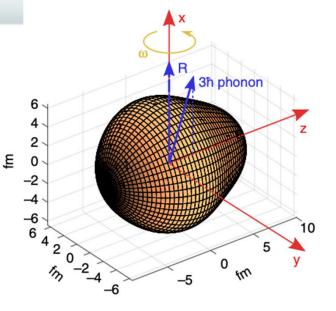
CERN fellows with strong JY link: J. Konki, Applied Fellow 2018 - 2020 M. Vilén, Applied Fellow 2019- 2021

HIP physics program

- The SPEDE spectrometer
 - successfully exploited at IDS prior to LS2, to be used at MINIBALL after LS2
- SISIN project (AoF, PI Janne Pakarinen)
 - day one experiment identified and proposal prepared
- Pending MINIBALL experiments
 - JY involved in many experiments, currently spokesperson in two proposals: ¹⁸⁸Pb and ^{182,184}Hg
- Ground-state properties and decay studies
 - Laser spectroscopy and precision atomic mass measurements

Recent highlights – probing EDMs

- Short-lived radon and radium atoms candidates for measuring electric dipole moment in atomic nuclei
- Radon atoms provide less favourable conditions for the enhancement of a measurable atomic EDM


ARTICLE

COMMUNICATIONS

https://doi.org/10.1038/s41467-019-10494-5 OPEN

The observation of vibrating pear-shapes in radon nuclei

P.A. Butler^{® 1}, L.P. Gaffney^{® 1,2}, P. Spagnoletti³, J. Konki^{® 2}, M. Scheck^{® 3}, J.F. Smith³, K. Abrahams⁴, M. Bowry⁵, J. Cederkäll⁶, T. Chupp^{® 7}, G. de Angelis⁸, H. De Witte⁹, P.E. Garrett¹⁰, A. Goldkuhle¹¹, C. Henrich¹², A. Illana^{® 8}, K. Johnston^{® 2}, D.T. Joss¹, J.M. Keatings^{® 3}, N.A. Kelly³, M. Komorowska¹³, T. Kröll^{® 12}, M. Lozano², B.S. Nara Singh³, D. O'Donnell³, J. Ojala^{® 14,15}, R.D. Page¹, L.G. Pedersen¹⁶, C. Raison¹⁷, P. Reiter¹¹, J.A. Rodriguez², D. Rosiak¹¹, S. Rothe^{® 2}, T.M. Shneidman^{® 18}, B. Siebeck¹¹, M. Seidlitz¹¹, J. Sinclair³, M. Stryjczyk^{® 9}, P. Van Duppen⁹, S. Vinals¹⁹, V. Virtanen^{14,15}, N. Warr¹¹, K. Wrzosek-Lipska¹³ & M. Zielinska²⁰

Recent highlights – Coulex of ¹³²Sn

- The first publications from HIE-ISOLDE
- "...the confirmation that the tin-132 nucleus belongs to the doubly magic group of nuclei" CERN courier

PHYSICAL REVIEW LETTERS 121, 252501 (2018)

Enhanced Quadrupole and Octupole Strength in Doubly Magic ¹³²Sn

D. Rosiak,¹ M. Seidlitz,^{1,*} P. Reiter,¹ H. Naïdja,^{2,3,4} Y. Tsunoda,⁵ T. Togashi,⁵ F. Nowacki,^{2,3} T. Otsuka,^{6,5,7,8,9} G. Colò,^{10,11} K. Arnswald,¹ T. Berry,¹² A. Blazhev,¹ M. J. G. Borge,^{13,†} J. Cederkäll,¹⁴ D. M. Cox,^{15,16} H. De Witte,⁸ L. P. Gaffney,¹³ C. Henrich,¹⁷ R. Hirsch,¹ M. Huyse,⁸ A. Illana,⁸ K. Johnston,¹³ L. Kaya,¹ Th. Kröll,¹⁷ M. L. Lozano Benito,¹³ J. Ojala,^{15,16} J. Pakarinen,^{15,16} M. Queiser,¹ G. Rainovski,¹⁸ J. A. Rodriguez,¹³ B. Siebeck,¹ E. Siesling,¹³ J. Snäll,¹⁴ P. Van Duppen,⁸ A. Vogt,¹ M. von Schmid,¹⁷ N. Warr,¹ F. Wenander,¹³ and K. O. Zell¹

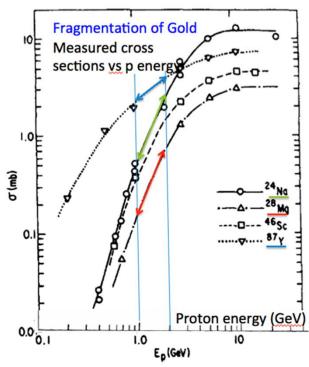
(MINIBALL and HIE-ISOLDE Collaborations)

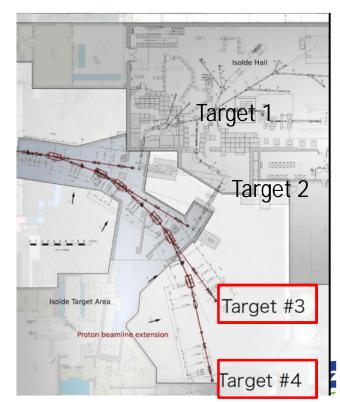
The Future of (HIE-)ISOLDE

The EPIC project:

Exploiting the Potential of ISOLDE at CERN

(the ISOLDE Collaboration input to the European Particle Physics Strategy update)


http://europeanstrategyupdate.web.cern.ch/process-0


The EPIC project Workshop December 3-4, 2019

EPIC objectives

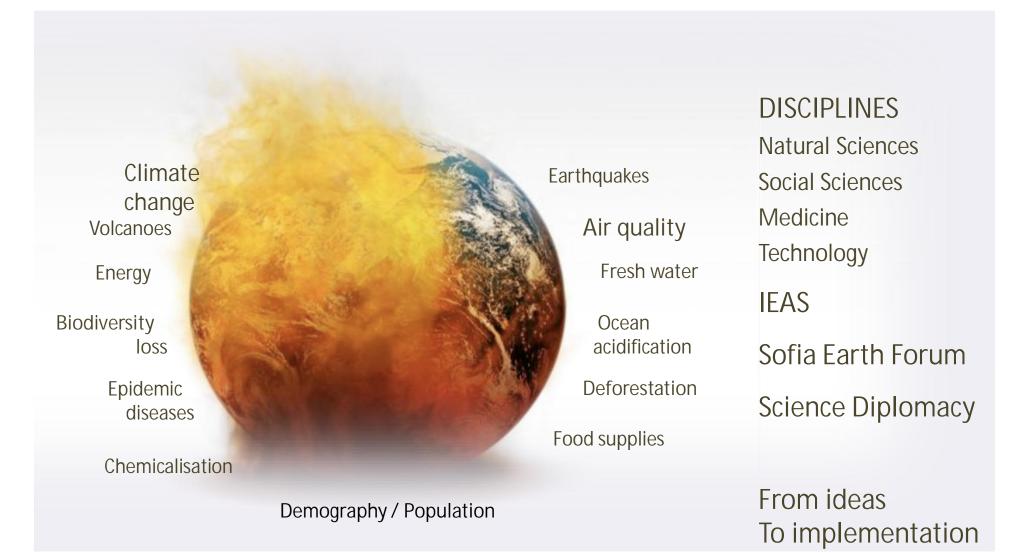
- Improve the exploitation of the existing infrastructure
 - \succ With all SC cavities running after LS2 \rightarrow 10 MeV/u RIB's
- Profit from increased driver beam energy and intensity (2 GeV, 4 μ A)
- A new storage ring for short-lived light and heavy ions
- Have multiple simultaneous beams for users
- Meet modern radioprotection standards.

CLOUD experiment at CERN

Prof. Markku Kulmala Ass. Prof. Katrianne Lehtipalo

HIP and INAR

CLOUD


Cosmics Leaving Outdoors Droplets

Main purpose:

study the influence of cosmic rays on clouds and climate

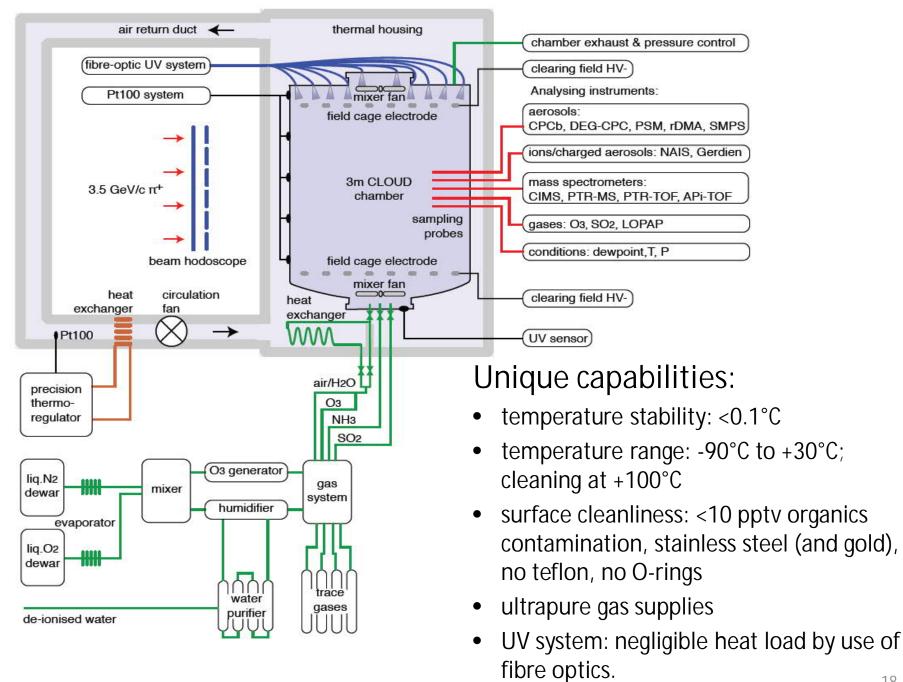
- Study new particle formation and growth in a highly controlled manner
- Study ice nucleation and aqueous phase processes in cloud droplets
- Collaboration of 17 institutes in 9 countries
- 3 Horizon 2020 MSCA Initial Traning Networks: CLOUD-ITN (2008-2012), CLOUD-TRAIN (2012-2016), CLOUD-MOTION (2017-2021), connected also to several Finnish Academy and ERC projects

CONTRIBUTION TO Solving GRAND CHALLENGES

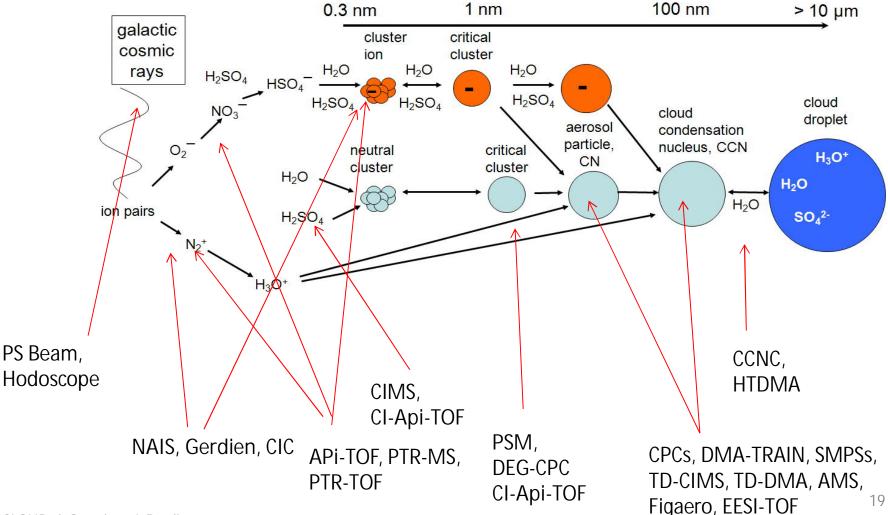
CLOUD Aerosol chamber

- 27 m³
- Pressure: Atmospheric ± 0.3 bar
- Only metallic seals
- Electropolished inner surfaces

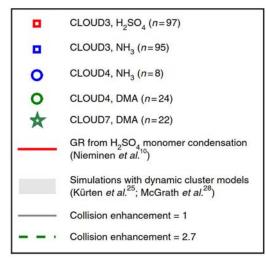
CLOUD, A.Onnela & J. Duplissy

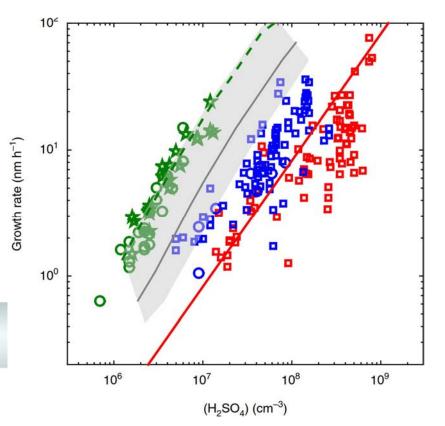


The CLOUD chamber allows studying the effect of ionization on aerosol formation


High-voltage clearing field

- lons are created in the chamber naturally due to galactic cosmic rays (GCR) (~500/cm³)
- Additional ionization from proton syncrotron beam (<3000/cm³)
- High-voltage clearing field can be used to remove all the ions $(~0/cm^{3})$
- \rightarrow neutral, gcr and beam runs to simulate ionization at different altitudes of the atmosphere 17


CLOUD, A.Onnela & J. Duplissy



State-of-the-art instrumentation for following every step of the particle formation process

First results on initial particle growth

ARTICLE

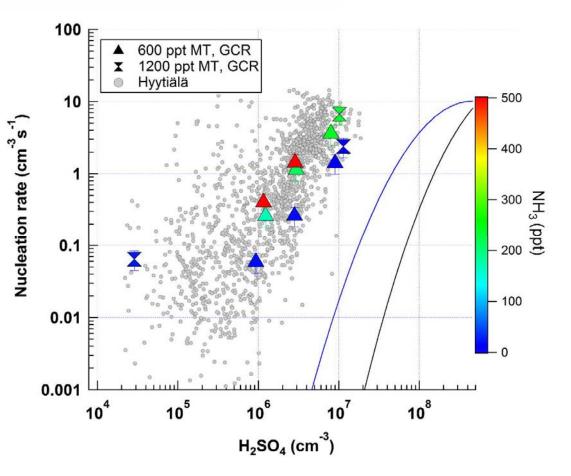
Received 21 Sep 2015 | Accepted 12 Apr 2016 | Published 20 May 2016

2016 DOI: 10.1038/ncomms11594 OPEN

The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

Katrianne Lehtipalo et al.#

COMMUNICATIONS


 NH₃ and amines accelerate growth due to acid-base clustering
→ significantly increase the survival of the recently formed clusters to aerosol particles and further to cloud condensation nuclei.

Hyytiälä simulation in CLOUD: interaction of H₂SO₄-NH₃ and organics

" Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors"

K. Lehtipalo et al. eaau5363

December 12, 2018

Recent and next CLOUD campaigns

- CLOUD10 &11 (Sep-Dec 2015, 2016)
 - Pure biogenic nucleation in different conditions
 - Effect of NOx on particle formation
 - Hyytiälä simulation
 - Amazon
- CLOUD12 & 13 (Sep-Dec 2017, 2018)
 - Marine new particle formation
 - Biogenic-anthropogenic mixture
 - Urban new particle formation
- CLOUD14 (Sep-Dec 2019)
 - Particle growth from clusters to cloud condensation and ice nuclei
 - Ice nucleation and cloud droplet activation
- CLOUD 15 (fall 2021)

Red: led by Univ. Helsinki

Summary

- One ca. 10 week intensive campaign/year
 - Thousands of successful runs
 - UHEL had a leading role in specific parts of each campaign
 - New CLOUD-MOTION ITN (2 new PhD students started at UHEL last year)
- CLOUD has produced a lot of high-level publications
 - 6 in 2015
 - 21 in 2016 (2 Nature, 1 Science, 1 Nature Comm., 1 PNAS)
 - 9 in 2017
 - 7 in 2018 (1 PNAS, 1 Science Advances) + 2 submitted
- 2-3 Annual data analysis work shops + summer and winter schools
- 3-5 days consortium meeting annually