CMS — current and future 🖤 🔖

HELSINKI NSTITUTE OF PHYSICS

Where we are today

erc C

- 1000 published papers as first collaboration in history
- Beautiful results fully confirming Standard Model
- Discovery of **Higgs boson** and studies of its properties

"Observation of a New Boson at a mass of 125 GeV..."

• HIP a powerhouse in **Particle Flow and Jets**

in Phys.Lett.B. from 2012 (>12k citations)

Video published for 1000th CMS paper (19 Jul 2020)

Jet powerhouse

- LHC is a hadron collider, so jets are at the very core of LHC physics:
 - anything that can be produced with hadrons, must be able to decay back to hadrons => jets
 - new particles may be discovered at high energy, possibly explaining dark matter
 - precision measurements with jets probe Standard Model even up to Planck scale

Project goal: **breakthrough 0.1% precision** on jet energy, having potential for insight on **physics up to Planck scale**

Future of CMS, HIP 25 Jubilee, 20 May 2022

Mikko Voutilainen, UH and HIP

erc

Probing up to Planck scale

- Top quark mass m_t and strong coupling constant α_s can potentially probe physics up to *Planck scale* with constraints on cosmological history
- Latest from CMS (2016 data) are world's most precise measurements at hadron colliders:
 - ▷ m_t = 171.77 ± 0.38 GeV => expect full Run 2 with 0.19 GeV uncertainty
 - ▷ $\alpha_s(m_z) = 0.1170 \pm 0.0019 =>$ expect full Run 2 to approach lattice QCD precision of 0.0010

Future of CMS, HIP 25 Jubilee, 20 May 2022

erc 🔧

Cliffhangers from Run 2

erc the Helsing

- CMS $\approx 3\sigma$ excesses: vector-like leptons, dijet pairs, Higgs-like TT
- These could turn into discoveries in Run 3, if real. Most others need HL-LHC

Jim's LHCP talk on May 16

Jim Olsen (Princeton University)

CMS STATUS AND OVERVIEW - LHCP 2022

16

Future of CMS, HIP 25 Jubilee, 20 May 2022

5 / 15

Mikko Voutilainen, UH and HIP

High-luminosity LHC

• HL-LHC is focal point of HEP future

- Need unprecedented experimental uncertainties to fully exploit the data
- Run 3 ideal opportunity to improve in methods for HL-LHC
- <u>European Strategy for Particle Physics</u> calls for *"continued innovation in* <u>experimental techniques</u>" => precision and pileup robustness

- larger reach, less dead material
- large Particle Flow performance gains in endcap
- MIP timing detector (MTD)
 - 4D interaction vertex reconstruction
 - precision timing to filter out pileup interactions

Tracker extension

Future of CMS, HIP 25 Jubilee, 20 May 2022

7 / 15

Mikko Voutilainen, UH and HIP

Precision proton spectrometer

CMS central detector

- Detects protons from central exclusive processes @200m at a few mm distance from the outgoing beam
- Tracking and time-of-flight (TOF) in Roman Pots (RP)
 - replaced tracking and upgraded TOF for Run 3
 - refurbished RP systems and new detectors for HL-LHC
 - HIP contribution: diamond based TOF detectors

CMS and TOTEM collaborations, CMS-PAS-PRO-21-001

High-Granularity calorimeter

- All-silicon electromagnetic calorimeter
 - very radiation hard inner parts
 - Iow radiation hadronic part: Si & scintillator
- 3D shower imaging in calorimeter endcap
 - very accurate, but very high data rates
 - machine learning used for reconstruction

3D shower + Machine learning

Machine learning

- From novelty to everyday tool:
 - CMS Open Data for Machine Learning
 - ▶ Real-time analysis with ML (SMARTHEP)
 - Heterogeneous computing (CPU + GPU)
- Deep learning algorithms now widely used
 - W polarisation tagging
 - quark / gluon discrimination
 - ML-based JEC

Image: Fermilab/CERN

https://cms.cern/news/cms-releases-open-data-machine-learning

Future of CMS, HIP 25 Jubilee, 20 May 2022

Quantum computing?

- Quantum technologies could mature in next 5-10 years
- <u>CERN Quantum Technology Initiative:</u>
 - quantum machine learning
 - direct simulation of quantum systems (e.g. lattice QCD)
- Finland's first quantum computer at VTT made by IQM
 - first commercial 54-cubit computer being built
 - ERC-AdG 2021 highlight: ConceptQ, a new qubit concept

erc

IQ)

IQM

CÉRN

QUANTUM

TECHNOLOGY INITIATIVE

Central exclusive production

- Central exclusive production: LHC turned into photon-photon (or gluon-gluon) collider!
- Interacting protons remain intact and can be measured by precision proton spectrometer (PPS)
- Background much reduced by mass & rapidity matching between central & forward systems
- Sensitive to beyond-standard-model physics through loops (anomalous gauge couplings)
 - or direct new particle production

e.g. high mass (> 800 GeV) exclusive diphoton search: sensitive to anomalous 4-photon couplings (ς_1 , ς_2)

CMS and TOTEM collaborations, arXiv: 2110.05916, accepted by Phys. Rev. Lett.

Higgs to bb

- Project supported by SMARTHEP European Training Network
- Real-time machine-learning analysis of Z-to-bb and H-to-bb in Run 3

erc

Establish general-purpose real-time-analysis stream for the High-Luminosity LHC
 exploiting extended capabilities of the new detector

Di-Higgs

- HH production is among the main priorities of the LHC physics program
- Very rare process in the SM forces the analysts to innovate to push sensitivity higher
- Self-coupling most obvious way to understand the Higgs field
- gluon-gluon fusion (ggF)

Summary

- Jet powerhouse: top quark mass, strong coupling constant, dijet resonances, Higgs to bb
 new physics or Standard Model up to the Planck scale?
- Exciting upgrades for High-Luminosity LHC: tracking, timing, high-granularity calorimeter
 supercharging CMS with precision proton spectrometer and machine learning
- Exploration ahead: vacuum stability, dark matter, Higgs potential
 - High-Luminosity LHC as the focal point

Thanks to the team!

erc 🌱

Backup slides

LS2 upgrades

PIXEL TRACKER BEAM PIPE Replaced with an entirely new one All-new innermost barrel pixel layer, compatible with the future tracker in addition to maintenance and repair upgrade for HL-LHC, improving the work and other upgrades. vacuum and reducing activation. HADRON SOLENOID MAGNET CALORIMETER New powering system to prevent full power cycles New on-detector electronics

New on-detector electronics installed to reduce noise and improve energy measurement in the calorimeter.

New powering system to prevent full power cycles in the event of powering problems, saving valuable time for physics during collisions and extending the magnet lifetime.

GAS ELECTRON MULTIPLIER (GEM) DETECTORS

CATHODE STRIP CHAMBERS (CSC)

conditions.

Read-out electronics upgraded on all the 180 CSC muon chambers allowing performance to be maintained in HL-LHC

BRIL

New generation of detectors for monitoring LHC beam conditions and luminosity.

An entire new station of detectors installed in the endcap-muon system to provide precise muon tracking despite higher particle rates of HL-LHC.

https://home.cern/press/2022/CMS-upgrades-LS2

Mikko Voutilainen, UH and HIP

Higgs bosons oF v2 in Sept

Additional Higgs bosons predicted in many BSM models

Lehti

Singly-charged Higgs bosons

- Analyses on-going with full Run 2 data on H^+ TV and H^+ tb with Cyprus
- Trigger development for Run 3 started \triangleright

Havukainen, Lotti, Lehti

Doubly-charged Higgs bosons

- Minimal left-right symmetric SUSY allows high scale and favours \dot{H}^{++} always in the lightest part
- Explains neutrino masses, has DM candidate
- Dominant decay into $H^{++} \rightarrow \tau^+ \tau^+$, HIP expertise
- Paper by HIP phenomenology group [1]

